月曜日火曜日水曜日木曜日金曜日
1-2
3-4電波工学特論人間情報工学
昼休み
5-6科学技術論
7-8
9-10
11-12

トップページ

研究会 

専門ゼミ 

卒業論文テーマ 

論文候補 

中間発表 






x/a,0.],\n [0.,gy/a]\n ])) \n\n #print(M)\n K = np.dot(M , np.array([\n [a1,a2],\n [a3,a4]\n ]))\n\n B = np.dot(M , np.array([\n [b1,b2],\n [b3,b4]\n ]))\n\n\n #print(str(j+1)+"回目の慣性行列")\n #print(M)\n #print(str(j+1)+"回目の粘性行列")\n #print(B)\n print(str(j+1)+"回目の剛性行列")\n print(K))


*1

(Z.T.shape)\n \n e = Z - np.dot(H, x) # 2*1\n\n E += math.sqrt*3\n \n #Sは常にプラス\n S = R + np.dot(np.dot(H, P), H.T) # 2*2\n \n #Sの逆行列も問題なし\n K = np.dot(np.dot(P, H.T), np.linalg.inv(S)) # 6*2\n \n x = x + np.dot(K, e)\n \n P = np.dot*4, P) # 6*6\n\n if n == len(points) - 1 and j == 0 and i == 0:\n P0 = P\n\n beta = beta + (np.linalg.det(P0)/np.linalg.det(P))\n \n #if i == 9 and j == 9:\n #plt.plot(points[n][0],points[n][1],marker='>')\n #plt.plot(x[0], x[1],marker='+')\n #print(y[0],y[1])\n #plt.plot(y[0], y[1],marker='+')\n \n return \n\nfor i in range(10):\n #with codecs.open("simi"+str(i+1)+".csv","r","utf-8","ignore") as file:\n with codecs.open("kawa"+str(i+1)+".csv","r","utf-8","ignore") as file:\n reader = list(csv.reader(file))\n points = [[float(s) for s in z] for z in reader]\n \n P = np.array([\n [1., 0., 0., 0., 0., 0.],\n [0., 1., 0., 0., 0., 0.],\n [0., 0., 1., 0., 0., 0.],\n [0., 0., 0., 1., 0., 0.],\n [0., 0., 0., 0., 1., 0.],\n [0., 0., 0., 0., 0., 1.]\n ]) # 共分散行列 6*6\n\n beta = 0\n \n for j in range(10):\n E = 0\n \n kalman_filter()\n \n #print("結果"+str(i+1)+"回目の誤差", E/len(points)) \n print("結果"+str(i+1)+"回目の信頼度",beta / len(points))\n)



*1 Fd*c1*(dt**2
*2 Fi*c2*(dt**2
*3 float(e[0])**2) + (float(e[1])**2
*4 I - np.dot(K, H

トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS