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記号一覧

以下に本論文において用いられる用語と記号の対応表を示す．
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MultiHead Attentionにおける単語ベクトルにWQを掛けたもの Q

MultiHead Attentionにおける単語ベクトルにWK を掛けたもの K

MultiHead Attentionにおける単語ベクトルにW V を掛けたもの V

MultiHead Attentionにおける次元数 vT

MultiHead Attentionにおける訓練される重み行列 WO

Positional Encodingにおける位置エンベディングの次元数 i

Positional Encodingにおける埋め込みベクトルの次元数 dmodel

Siamese Networkにおける埋め込み表現の次元 n

Siamese Networkにおけるラベルの数 k

UMAPにおける他の点 xiの近傍に xjが属する強さ vj|i
UMAPにおける他の点 yiの近傍に yjが属する強さ wj|i

UMAPにおける他の点 xjが属する強さ vj|i
UMAPにおける点 xiと xjの距離 rij
UMAPにおける点 yiと yjの距離 dij
UMAPにおける点 xiに対して，k近傍の集合 Ki

UMAPにおける点の疎密に対応するための変数 σi

k-menasにおける n個の個体 x⃗i = (xi1，. . .，xiD)

k-menasにおける n個の個体の集合 x

k-menasにおけるK個の重なりの無いクラス Xk, k = 1，. . .，K
k-menasにおけるクラスタの中心 c⃗k

k-menasにおけるX
(t)
k に属する個体の数 n

(t)
k

k-menasにおけるX
(t)
k の (K + 1)回目のクラスタの中心 c⃗k

(t+1)

シルエット分析における各データのサンプル x(i)

シルエット分析における x(i)が属するクラスタ Cin

シルエット分析における x(i)に最も近いクラスタ Cnear
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第1章

はじめに

§ 1.1 本研究の背景
　近年、深層学習（Deep Learning）を中心とした人工知能（AI）技術の発展は目覚まし
く、画像認識、自然言語処理、音声認識など多岐にわたる分野で人間を凌駕する性能を示し
ている.特に、大規模言語モデル（Large Language Models: LLM）の登場は、AIの汎用性
を飛躍的に高めた.しかし、これらのモデルが高性能化する一方で、モデルのパラメータ数
は指数関数的に増大している.例えば、近年の代表的なLLMでは数千億から数兆パラメータ
を有することも珍しくなく、その学習および推論には膨大な計算資源と電力が必要となる.

　この「モデルの巨大化」は、実用面において深刻な課題を突きつけている.第一に、推
論時のレイテンシ（遅延）の問題である.自動運転やリアルタイム翻訳など、即時性が求め
られるアプリケーションにおいて、巨大なモデルの計算負荷はシステムの応答速度を低下
させる要因となる.第二に、エッジデバイスへの実装の困難さである.スマートフォンや IoT

デバイスのような計算資源やメモリ容量、バッテリーに制約のある環境では、巨大なモデ
ルをそのまま動作させることは現実的ではない.第三に、環境負荷の問題である.AIモデル
の学習と運用に伴う消費電力の増大は、持続可能な開発目標（SDGs）の観点からも無視で
きない問題となっている.

　これらの課題に対処するため、モデルの軽量化技術が活発に研究されている.その代表
的な手法の一つが「プルーニング（Pruning：枝刈り）」である.プルーニングは、ニューラ
ルネットワークのパラメータのうち、推論精度への寄与が小さい、あるいは冗長であると
判断された結合を削除（ゼロ化）することで、モデルのサイズを圧縮し、計算コストを削
減する技術である.生物学的な脳のシナプス結合が、成長過程で不要な結合を淘汰し効率化
していくプロセスに着想を得ている.

従来のプルーニング手法の多くは、学習済みのモデルに対して重みの絶対値が小さいもの
を削除し、その後、精度を回復させるために再学習（Fine-tuning）を行うという手順を踏
む.しかし、この「再学習」のプロセスには多大な時間と計算コストがかかるという問題が
ある.また、どの重みを削除すべきかという基準（サリエンシー）の決定や、削除後のネッ
トワーク構造が最適である保証はなく、試行錯誤的な要素が強い.特に、モデルの構造を変
化させることは、学習のダイナミクス（収束挙動）を不安定にさせるリスクを伴う.

　一方で、ニューラルネットワークの学習則やダイナミクスそのものを改良するアプロー
チとして、非線形力学系における「ターミナルアトラクタ（Terminal Attractor）」の概念
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が注目されている.通常のニューラルネットワークの学習（勾配降下法など）は、リプシッ
ツ条件を満たす力学系に基づいており、誤差がゼロになる平衡点（アトラクタ）へは無限
の時間をかけて漸近的に収束する.つまり、理論上は有限時間内に完全に学習が終了するこ
とはない .これに対し、ターミナルアトラクタはリプシッツ条件を特異点において破るこ
とで、解軌道が有限時間内に平衡点に到達することを数学的に保証する概念である .先行
研究として、動径基底関数ネットワーク（RadialBasis Function Network: RBFN）に対し、
このターミナルアトラクタを導入することで、学習回数の上限を指定し、かつ高速に収束
させる手法が提案されている .また、不要なニューロンを削除する「競合（Competition）」
メカニズムと組み合わせることで、構造の最適化と学習の高速化を同時に図る試みもなさ
れてきた .

§ 1.2 本研究の目的
　本研究の主たる目的は、ターミナルアトラクタの概念を導入した新しいニューラルネッ
トワークのプルーニング手法を提案し、その有効性を実証することである.具体的には、従
来の重みの大きさのみに基づく静的なプルーニングではなく、学習のダイナミクスを考慮
した動的なプルーニングアルゴリズムを構築する.

従来の勾配法に基づく学習では、誤差関数が平坦な領域において学習が停滞しやすく、こ
れがプルーニング後の精度回復を遅らせる要因となっていた.本研究では、誤差関数の勾配
情報にターミナルアトラクタ項を付加することで、特異点への求心力を高め、プルーニン
グによって生じた精度の劣化を有限時間内に、かつ急速に回復させるメカニズムを実現す
る.これにより、従来手法と比較して、少ない学習回数で、同等以上の精度を持つ軽量モデ
ルを構築することを目指す.

　本研究の第二の目的は、提案手法を大規模言語モデルのファインチューニング（Fine-

tuning）に適用し、その実用性を検証することである.第 3章で詳述するように、LLMの
ファインチューニングは特定のタスクに適応させるために重要であるが、全パラメータを
更新するには莫大な計算コストがかかる.近年では LoRA（Low-Rank Adaptation）などの
パラメータ効率の良い学習手法（PEFT）が提案されているが、本研究ではこれらとは異な
るアプローチとして、ターミナルアトラクタを用いたプルーニングによる効率化を模索す
る.具体的には、事前学習済みのモデルに対し、タスク適応に必要な重要な重みのみを残し
つつ、ターミナルアトラクタの効果によって素早く最適解へ収束させることで、「学習時間
の短縮」と「推論モデルの軽量化」の双方を同時に達成することを目指す.これは、先行研
究であるRBFNにおける競合学習や複製メカニズム の思想を、現代のDeep Learningの文
脈で再解釈し、高次元パラメータ空間における最適化問題として拡張する試みでもある.

§ 1.3 本論文の概要
本論文は次のように構成される．

第 1章 本研究の背景と目的について説明する．
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第 2章 ニューラルネットワークにおけるプルーニングとターミナルアトラクタについてま
とめる．

第 3章 大規模言語モデルとファインチューニングについてまとめる．

第 4章 提案手法について説明する．

第 5章 第 4章で述べた手法で，数値実験結果並びに考察を行う．

第 6章 本論文における前章までの内容をまとめつつ，本研究で実現できたことと今後の展
望について述べる．
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第2章
ニューラルネットワークにおけるプルーニ
ングとターミナルアトラクタ

§ 2.1 モデルの軽量化手法としてのプルーニング
（１）現代のニューラルネットワークにおける課題と軽量化の必要性

　近年の Deep Learningの発展は目覚ましく、画像認識、自然言語処理、音声認識といっ
た多岐にわたるタスクにおいて、人間を凌駕する性能を達成している.特に、Transformer

アーキテクチャの登場以降、モデルの大規模化（スケーリング）は性能向上のための最も
確実なアプローチとなり、パラメータ数が数千億から数兆のオーダーに達する大規模言語
モデルも珍しくない状況となっている.しかし、このようなモデルの巨大化は、計算資源の
増大、推論レイテンシの悪化、および消費電力の増加という深刻な課題を突きつけている.

これらの課題に対処するため、モデルの精度を維持しつつ、パラメータ数や演算量を削
減する「モデル軽量化」技術の研究が活発化している.軽量化のアプローチは多岐にわたる
が、主要なものとして、パラメータの数値表現ビット数を減らす「量子化」、巨大な教師モ
デルの知識を小さな生徒モデルに転移させる「知識蒸留」、そして本研究の主題である、不
要な結合やニューロンを物理的に削除する「プルーニング」が挙げられる.

（2）プルーニングの定義と生物学的背景

プルーニング（枝刈り）とは、学習済みのニューラルネットワーク、あるいは学習過程に
あるネットワークから、推論精度への寄与が低い冗長なパラメータを選択的に削除し、ス
パース（疎）な構造へと変換する技術である.数学的には、ニューラルネットワークの重み
ベクトル w に対し、L0 ノルム（非ゼロ要素の数）を制約条件として、損失関数 E(w) を
最小化する最適化問題として定式化できる.

min
w

E(w) s.t. ∥w∥0 ≤ κ (x) (2.1)

ここで、κ は目標とする非ゼロパラメータ数である.この工学的なアプローチは、神経科学
における「シナプス剪定（Synaptic Pruning）」に着想を得ている.人間の脳の発達過程に
おいて、乳幼児期には過剰なシナプス結合が形成されるが、成長に伴い、外部環境からの
刺激や学習を通じて使用頻度の低い結合が淘汰され、効率的な神経回路網が構築される.こ
の生物学的な「適者生存」のメカニズムは、限られたエネルギーとスペースで高度な知能
を実現するための合理的な戦略であり、人工ニューラルネットワークにおいても同様の効
率化が可能であることが示唆されている.
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（3）深層学習モデルにおける軽量化技術の概観

• 量子化
ニューラルネットワークの重みや活性化関数は、通常32ビットの浮動小数点数（FP32）
で表現される.量子化は、これを 16ビット（FP16）、8ビット（INT8）、あるいはそれ
以下の低ビット表現に変換する手法である.表現精度を下げることで、モデルのファ
イルサイズを劇的に縮小し、メモリ帯域幅の節約と演算の高速化を実現する.しかし、
極端なビット削減は情報量の欠落を招き、精度の低下を引き起こすトレードオフが存
在する.

• 知識の蒸留
大規模で高性能なモデル（教師モデル）の入出力関係や中間層の特徴量を、小規模
なモデル（生徒モデル）に学習させる手法である.単に正解ラベル（Hard Target）を
学習するだけでなく、教師モデルが出力する確率分布（Soft Target）を模倣させるこ
とで、小規模モデルであっても教師モデルに近い汎化性能を獲得させることを目的と
する.

• 低ランク近似
重み行列が冗長であり、実際には低いランクで近似可能であるという仮定に基づく手
法である.特異値分解（SVD）などを用いて巨大な行列を複数の小さな行列の積に分
解することで、パラメータ数を削減する.

（4）プルーニング手法の分類

プルーニングは、その削除単位によって「非構造化プルーニング」と「構造化プルーニ
ング」に大別される.

• 非構造化プルーニング（Unstructured Pruning）
個々の重みパラメータ wij を独立して評価し、削除対象とする手法である.モデルの
構造的な制約を受けないため、理論上は最も不要なパラメータを精密に除去でき、高
い圧縮率と精度の維持を両立しやすい.しかし、結果として得られる重み行列はラン
ダムな疎行列（Sparse Matrix）となり、メモリ上の配置が不連続となるため、GPU

などの並列演算ハードウェアにおいて計算効率を向上させることが難しいという実装
上の課題がある.

• 構造化プルーニング（Structured Pruning）
フィルタ（カーネル）、チャネル、あるいはニューロン全体といった、特定の構造単位
で削除を行う手法である.例えば、畳み込み層における特定のフィルタを丸ごと削除
すれば、出力特徴マップの枚数が減り、後続の演算量も削減される.この手法は、行
列の次元そのものを縮小するため、専用のライブラリやハードウェアを用いずとも、
汎用的な環境で推論速度の向上（Speed-up）を享受できる利点がある.反面、非構造
化プルーニングに比べて削除の自由度が低く、同じ圧縮率での精度低下が大きくなる
傾向がある.
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（5）サリエンシー（重要度）の決定基準

「どのパラメータを削除すべきか」を決定するための指標はサリエンシー（Saliency）と
呼ばれ、プルーニングの性能を左右する最も重要な要素である.

• Magnitude Pruning（絶対値基準）
最も直感的かつ広く用いられている基準であり、重みの絶対値 |w| をその重要度とみ
なす.「絶対値が小さい重みは、入力信号に対して小さな応答しか返さないため、出力
への影響も軽微である」という仮定に基づく.計算コストが極めて低く、多くの場合
で十分な性能を発揮する.

• 勾配・ヘッセ行列に基づく基準
損失関数のテイラー展開に基づき、各パラメータの重要度を解析的に評価するアプ
ローチが存在する.これは、特定の重みを削除（ゼロ化）した際に生じる損失関数の
変化量を、数理的に近似・推定するものである. 代表的な手法として、一次微分（勾
配）の情報のみを用いる手法や、二次微分（ヘッセ行列）の情報まで考慮するOptimal

Brain Damage (OBD) や Optimal Brain Surgeon (OBS) などが知られている.これら
は単純な重みの絶対値を基準とする場合と比較して、より理論的かつ精緻なパラメー
タ選定が可能であるという利点を持つ.

（6）プルーニング後の再学習における課題

プルーニングを実行すると、ネットワークのパラメータが欠落するため、一時的にモデ
ルの表現力が低下し、推論精度（Accuracy）やパープレキシティ（Perplexity）が悪化する.

この劣化を回復させるためには、残されたパラメータを用いて再度学習を行う「ファイン
チューニング」が不可欠である.

しかし、プルーニングによってスパース化されたネットワークは、最適化のランドスケー
プ（誤差曲面）がいびつになり、局所解（Local Minima）やプラトー（Plateau）に陥りや
すくなる.その結果、通常の勾配降下法を用いた再学習では、精度の回復に多くのエポック
数を要したり、あるいは元の精度まで回復しきれなかったりするケースが散見される.特に
大規模言語モデルのファインチューニングにおいては、学習コストの増大は致命的である.

したがって、プルーニング後の再学習を、いかに「高速」かつ「確実」に収束させるかが、
実用上の大きな未解決問題となっている.本研究では、この課題に対する解として、次節で
述べる「ターミナルアトラクタ」を導入する.

§ 2.2 有限時間で収束するターミナルアトラクタ
まず，微分方程式における初期値問題に対する解の一意性を保証する条件であるリプシッ
ツ条件について説明する．

リプシッツ条件
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f (t, x)を，閉区間Ω = (t, x) | |t− t0| ≦ a, |x− x0| ≦ bで定義された関数とする．あ
る定数 Lがあり，Ω内の 2点 (t, x) , (t, y)において，

|f (t, x)− f (t, y)| ≦ L |x− y| (2.2)

となるとき，f はリプシッツ条件を満たす．
このリプシッツ条件が満たされると，それぞれの初期値問題に対して一意な解が存在し，そ
の解の軌道は漸近的に平衡点に近づく．すなわち，軌道は平衡点に近づくだけで，有限時
間内で平衡点に到達できない．これはCRBFNに置き換えると，競合に負けたシナプス結
合荷重は有限時間で 0に到達することができないということである．
そこで，このリプシッツ条件を破るという考えに基づいて解の一意性を破ることにより，
有限時間内でニューラルネットワークが平衡点に収束することを示した [?] [?]．このような
安定な平衡点をターミナルアトラクタと呼ぶ．このターミナルアトラクタの概念をCRBFN

に適用することで，収束時間の上限値を指定できるようにした．ここでは，時刻 t∗で平衡
解へ収束できるように修正されたシナプス可塑性方程式を導出する．
いま，正定関数 V (w)として

V (w) =
1

2

N∑
i=1

{η (xi)− s (xi)}2 (2.3)

を定義する．正定関数 V (w)はシナプス後発火頻度 η (xi)と神経伝達物質放出量 s (xi)の差
を表す指標である．シナプス後発火頻度 η (xi)が時間に依存しないと仮定すると，その時
間変化が

dV (w)

dt
=

M∑
j=1

∂V (w)

∂wj

dwj

dt

= −
M∑
j=1

[
N∑
i=1

η (xi) ξj (xi)−
M∑
h=1

N∑
i=1

ξj (xi) ξh (xi)wh

]
dwj

dt

= −
M∑
j=1

wj

(
αj −

M∑
h=1

γjhwh

)2

≤ 0 (2.4)

となるため，正定関数 V (w)が Lyapunov関数となることがわかる．さらに，V (w) > 0で
あり dV (w)

dt
≤ 0であることから，このシステムは漸近安定であるということもわかる．

ここで，重みwjの時間微分を

dwj

dt
= −∆ V (w)c∑M

j=1

(
∂V (w)
∂wj

)2 ∂V (w)

∂wj

(2.5)

とおくと，V (w)の時間微分は

dV (w)

dt
=

M∑
j=1

{
∂V (w)

∂wj

dwj

dt

}
= −∆V (w)c ≤ 0 (2.6)
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図 2.1: ターミナルアトラクタなし 図 2.2: ターミナルアトラクタあり

表 2.1: ターミナルアトラクタ適用前後の数値比較
重み w1 w2 w3 w4 w5 w6 w7 w8 w9

適用前 2.88 5.65 5.19 2.95 5.92 5.35 2.67 8.11 2.03

適用後 2.91 5.65 5.18 2.98 5.93 5.35 2.69 8.12 2.01

となる．ただし，cは 0 < c < 1を満たす．V (w)は時間とともに単調減少し，平衡点は漸
近安定となることがわかる．このときの収束時間 t∗は，

t∗ =

∫ t∗

0

dt =

∫ V (wt∗ )

V (w0)

dV (w)
dt

dV (w)

=
V (w0)

1−c − V (wt∗)
1−c

∆(1− c)
≤ V (w0)

1−c

∆(1− c)
(2.7)

で与えられ，有限時間内で収束することがわかる．V (w0)は重みの初期値を用いて計算し
たLyapunov関数 V (w)の初期値で，V (wt∗)は平衡点での V (w)の値である．V (wt∗) = 0

の場合，式 (2.7)の等号が成立する．そこで学習率∆を，

∆ =
t∗ (1− c)

V (w0)
1−c (2.8)

とすると収束時間を指定できる．このターミナルアトラクタの概念をCRBFNにおける重
みの学習に適用することで，初期状態において基底関数の数が多い場合でも従来の更新則
よりも速く学習を終了させることが可能となる．
また，[?] [?]で提案されているターミナルアトラクタを基に，違う形で提案されたターミ
ナルアトラクタ [?]も存在する．本研究では [?]で提案されているターミナルアトラクタを
用いて基底関数の重みの学習を行う．
まず，望ましい時刻 t∗で収束するシナプス結合荷重の時間変化を Lyapunov関数を用い
て規定する．そこで，Lyapunov関数の時間変化を

dV (w)

dt
= −V (w0)

RV (w)
1
r

Rt∗
(2.9)

で定義する．ここで，rは 1ではない任意の奇数であり，R = (r−1)
r
である．このような定

義が可能になったのは，Lyapunov関数が導出され，望ましい出力が動径基底関数を定数倍
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して足し合わせることで実現できる特別の場合を考えているからである．シナプス可塑性
方程式は

dwj

dt
= ∆

(
αj −

M∑
h=1

γjhwh

)
wj (2.10)

とすることができる．このとき，Lyapunov関数の時間変化は

dV (w)

dt
= −∆

M∑
j=1

wj

(
αj −

M∑
h=1

γjhwh

)2

(2.11)

となる．ここで，∆は式 (2.9)と式 (2.11)から決定することが可能で，

∆ =
1∑M

j=1 wj

(
αj −

∑M
h=1 γjhwh

)2 V (w0)
R V (w)

1
r

Rt∗
(2.12)

と導出される．以上より，望ましい時刻 t∗で平衡解へ収束するシナプス可塑性方程式を

dwj

dt
=

(
αj −

∑M
h=1 γjhwh

)
wj∑M

j=1 wj

(
αj −

∑M
h=1 γjhwh

)2 V (w0)
R V (w)

1
r

Rt∗
(2.13)

で定義することができる．
図 2.1，図 2.2にターミナルアトラクタ適用前後の重みwの学習過程を，表 5.2に実際の数
値による比較を示す．ターミナルアトラクタ適用前では重みw1～w9の数値を得るのに 100

回の学習を必要としていたが，適用後の数値を見ると指定した 50回の学習の時点で適用前
と同様の結果を得られていることがわかる．
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§ 2.3 ターミナルアトラクタの学習測への適用
(1) 多層ネットワークへの拡張とエネルギー関数の定義

前節で定義したターミナルアトラクタ（TA）の概念を、実際の多層ニューラルネットワー
クの学習則に組み込む.標準的なバックプロパゲーション（誤差逆伝播法）では、各層の重
み w に関する損失関数（エネルギー関数） E の勾配を用い、漸近的に解を探索する.本研
究では、この勾配情報に対し、TAの「有限時間収束性」を付与した新しい更新則を適用す
る.まず、ネットワーク全体の出力誤差を次のような二次形式のリアプノフ関数 V (w) と定
義する.

V (w) =
1

2

P∑
p=1

∥yp − op(w)∥2

ここで、P は学習データのサンプル数、yp は教師ベクトル、op は現在の重み w における
ネットワークの出力ベクトルである.学習の目的は、V (w)→ 0 となる重み集合 w∗ を最短
時間で見出すことにある.

(2) TA項を導入した重み更新アルゴリズム

先行研究における動径基底関数ネットワーク（RBFN）での知見に基づき、任意のパラ
メータ wj（重みやバイアス）に対する時間微分方程式を次のように構成する.

dwj

dt
= −∆ V (w)β∑

k

(
∂V
∂wk

)2
+ ϵ

∂V

∂wj

· · · (2.6)

ここで、∆ は学習率、β（0 < β < 1）はTAの特異性を制御するパラメータ、ϵ は分母がゼ
ロになることを防ぐための微小な正定数である.式 (2.6)の分母にある項∑

k(∂V/∂wk)
2 は、

全パラメータ空間における勾配のノルムの二乗を意味する.この項で正規化を行うことによ
り、勾配が極めて小さいプラトー領域においても、分子の V (w)β による強力な吸引力が維
持され、解軌道が停滞することなく誤差ゼロの地点（アトラクタ）へ向かうことが可能と
なる.

(3) プルーニング後の構造的制約下におけるダイナミクス

本研究の独自性は、このTA学習則をプルーニング後の「疎（Sparse）なネットワーク」
に適用する点にある.プルーニングによって一部の重みが固定（w = 0）された場合、学習
に寄与するパラメータの自由度は減少する.従来の勾配法では、この制約下で複雑な誤差曲
面を探索すると収束が極めて不安定になるが、TAを導入することで以下の利点が得られる.

• 特異点への強制的収束
プルーニングにより表現力が制限された状態でも、TAは残されたパラメータを誤差
最小化のために「最短経路」で駆動する.
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• 適者生存の加速
プルーニングによって生き残った重要な重みに対して、TAが優先的に学習資源（更
新量）を割り当てる効果が期待できる.

• 計算効率の最適化
式 (2.4)で導出した有限時間 tf を用いることで、プルーニング後の微調整（Fine-

tuning）に必要なステップ数を理論的に予測し、無駄な反復計算を排除できる.

(4) 実装における離散化処理

計算機上で動作させるため、式 (2.6)を離散化し、各ステップ n における重みの更新式を
次のように定める.

wj(n+ 1) = wj(n)−∆ · δt · V (w(n))β∑
k

(
∂V
∂wk

)2
+ ϵ

∂V

∂wj

ここで δt は微小時間ステップである.この離散化された更新則を用いることで、従来手法
（SGDや Adam等）を TAベースの学習則へと置き換え、プルーニング後の再学習を高速
化するアルゴリズムが完成する.
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第3章

大規模言語モデルとファインチューニング

§ 3.1 大規模言語モデルの発展と現状
3.1.1 自然言語処理の変遷

自然言語処理（Natural Language Processing: NLP）の歴史は、計算機を用いて人間言
語の曖昧性と複雑性を如何にモデル化するかという挑戦の連続であった.初期のアプローチ
は、N-gramモデルに代表される統計的言語モデルが主流であり、単語の出現確率に基づい
て次に来る単語を予測していた.しかし、この手法は文脈の長さに応じて計算量が指数関数
的に増大するため、長い文脈を考慮することが困難であった. 2010年代に入り、ニューラ
ルネットワークを用いた言語モデル（Neural Language Models）が登場したことで状況は
一変する.特に、リカレントニューラルネットワーク（RNN）や、その改良版であるLSTM

（Long Short-Term Memory）は、可変長の系列データを扱うことができ、長期依存関係の
学習において一定の成果を挙げた.しかし、これらのモデルは時系列データを逐次的に処
理する構造上、計算の並列化が不可能であり、学習に膨大な時間を要するという致命的な
欠点を抱えていた.また、系列が長くなるにつれて勾配消失問題が発生しやすく、文脈理
解の範囲には限界があった. この停滞を打破したのが、2017年にVaswaniらによって提案
された「Transformer」アーキテクチャである.Transformerは、再帰構造を完全に排除し、
「Attention（注意機構）」のみを用いることで、文中の全単語間の関係性を並列に計算する
ことを可能にした.この革新により、従来とは桁違いの規模のデータセットを用いた学習が
可能となり、現在の大規模言語モデルの基礎が築かれた.

3.1.2 スケーリング則と創発的特性

Transformerの登場以降、モデルのパラメータ数、学習データ量、そして計算量を増加さ
せることで、言語モデルの性能が飛躍的に向上することが明らかになった.Kaplanら（2020）
は、これらの要素とモデルの損失（Test Loss）との間にべき乗則（Power Law）が成立す
ることを示し、これを「スケーリング則（Scaling Laws）」と提唱した.この法則によれば、
計算資源を投じれば投じるほど、モデルの精度は予測可能な形で向上し続けるとされる. こ
の知見に基づき、GoogleのBERT（2018）、OpenAIのGPTシリーズ（2018-2023）、Meta

の LLaMA（2023）など、パラメータ数が数十億（Billions）から数千億（Trillions）に達
する巨大モデルが次々と開発された.例えば、GPT-3は 1750億パラメータを有し、特定
のタスクに対するファインチューニングを行わずとも、少数の例示のみでタスクをこなす
「Few-shot Learning」能力を示した. さらに興味深い現象として、Weiら（2022）は「創発
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（Emergence）」という特性を報告している.これは、モデルの規模がある閾値を超えた瞬間
に、それまでの小規模なモデルでは見られなかった高度な能力（例えば、複雑な算術演算、
論理推論、多段階の思考プロセスなど）が突如として発現する現象である.この創発的特性
こそが、現代の LLMが単なる「次単語予測器」を超え、汎用的な人工知能（AGI）への足
がかりとして注目される最大の理由である.

3.1.3 計算資源の増大と「Green AI」への転換

しかし、モデルの巨大化は深刻な副作用をもたらしている.第一に、学習コストの増大で
ある.最先端のLLMを一度学習させるためには、数千基の高性能GPUを数ヶ月間稼働させ
る必要があり、その電力消費量は小規模な都市のそれに匹敵するとも言われる.これは環境
負荷の観点から持続可能とは言い難く、近年では精度だけでなくエネルギー効率を重視す
る「Green AI」への転換が叫ばれている.

第二に、推論時のレイテンシ（遅延）とメモリ制約の問題である.数千億パラメータのモ
デルを展開するには、テラバイト級のVRAM（ビデオメモリ）が必要となり、これを運用
できるのは一部の巨大テック企業に限られる.この「AIの独占」を防ぎ、スマートフォンや
エッジデバイス、あるいは一般的なオンプレミスサーバーで高度な言語モデルを動作させ
るためには、モデルのサイズを劇的に圧縮する技術が不可欠である.

効率化へのアプローチ

これらの課題に対し、本研究では「プルーニング」技術に着目する.モデル内の冗長なパ
ラメータを削除することで、推論に必要な計算量とメモリ量を物理的に削減することが可
能である.しかし、従来の単純なプルーニング手法を LLMに適用した場合、創発によって
獲得された繊細な知識構造が破壊され、精度の回復に多大な再学習コストがかかるという
問題があった.

そこで本研究では、第 2章で述べた「ターミナルアトラクタ」の概念を導入する.プルー
ニングによって疎になったネットワークに対し、有限時間収束を保証する強力なダイナミ
クスを与えることで、失われた精度を最小限の計算ステップで回復させることを目指す.こ
れは、巨大化の一途をたどる LLM開発の流れに対し、「効率性」と「実用性」の観点から
新たな解決策を提示するものである.

§ 3.2 Transformer アーキテクチャの基本構造
3.2.1 全体構造と並列処理の実現

本研究が対象とする大規模言語モデルの基盤となっているのは、Vaswaniらによって 2017

年に提案された「Transformer」アーキテクチャである.従来のRNN（Recurrent Neural Net-

works）が系列データを左から右へと逐次的に処理していたのに対し、Transformerは「Self-

Attention（自己注意機構）」を用いることで、系列内の全トークン間の依存関係を並列に
計算する構造を持つ.

Transformerのオリジナルの構成は、入力を処理するエンコーダ（Encoder）と、出力を生
成するデコーダ（Decoder）から成る.しかし、GPT（Generative Pre-trained Transformer）
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図 3.1: BERTによる処理の流れ 図 3.2: UMAPによる次元圧縮

シリーズをはじめとする近年の主要な LLMは、デコーダ部分のみを積層した「Decoder-

only」アーキテクチャを採用している.本節では、このDecoderブロックを構成する核心的
なサブレイヤーについて詳述する.

3.2.2 Scaled Dot-Product Attention

Transformerの最も重要な構成要素は、入力トークン間の関連度（Attention Score）を計
算する「Scaled Dot-Product Attention」である.入力となる埋め込み表現行列 X に対し、
学習可能な重み行列WQ,WK ,W V を乗じることで、クエリ（Query: Q）、キー（Key: K）、
バリュー（Value: V）の 3つの行列を生成する.

Q = XWQ, K = XWK , V = XW V

これらを用いて、Attentionの出力は次式で計算される.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V · · · (3.1)

ここで、dk はキーベクトルの次元数である.式 (3.1)において、QKT は全てのトークンペ
ア間の内積（類似度）を表す.これを √dk で除算する（スケーリング）理由は、次元数 dk
が大きくなった際に内積値が増大し、ソフトマックス関数の勾配が極端に小さくなる（勾
配消失）のを防ぐためである.この機構により、モデルは文中の距離に関わらず、任意の単
語間の関係性を直接的に捉えることが可能となる.

3.2.3 Multi-Head Attention

単一のAttentionでは、文脈の単一の側面しか捉えることができない可能性がある.そこ
でTransformerでは、異なる部分空間（Subspace）の情報を並列に抽出するために「Multi-

Head Attention」を採用している.モデルの次元 dmodel を h 個のヘッドに分割し、各ヘッド
i (i = 1, . . . , h) で個別にAttentionを計算する.

headi = Attention(QWQ
i , KWK

i , V W V
i ) · · · (3.2)

ここで、WQ
i ,WK

i ,W V
i ∈ Rdmodel×dk は各ヘッド固有の射影行列である.各ヘッドの出力は結

合（Concat）され、最終的な線形変換が行われる.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O · · · (3.3)
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WO ∈ Rdmodel×dmodel は出力射影行列である.本研究におけるプルーニングは、主にこれらの
巨大な重み行列群（WQ,WK ,W V ,WO）を対象に行われ、冗長なヘッドや結合を削減する
ことでモデルの軽量化を図る.

3.2.4 Position-wise Feed-Forward Networks

Attention層の後には、各位置（トークン）ごとに独立かつ同一に適用される全結合ニュー
ラルネットワーク（Feed-Forward Networks）が接続される.これは 2つの線形変換と、そ
の間の非線形活性化関数（ReLUやGELU）から構成される.

FFN(x) = Activation(xW1 + b1)W2 + b2 · · · (3.4)

通常、中間層の次元 dff はモデル次元 dmodelの4倍程度（例：dmodel = 1024なら dff = 4096）
に設定されるため、FFNはTransformer全体のパラメータ数の約 2/3を占める.したがって、
この層に対するプルーニングは、モデル圧縮において極めて高い効果を持つ.

3.2.5 Positional Encoding と Residual Connections

Transformerは再帰構造を持たないため、単語の語順情報（位置情報）を何らかの形で入力
に付与する必要がある.これが「Positional Encoding」であり、正弦波関数などを用いて各位
置固有のベクトルを入力埋め込みに加算する.また、各サブレイヤー（AttentionおよびFFN）
の出力には、学習の安定化と勾配消失防止のために「残差結合（Residual Connection）」と
「層正規化（Layer Normalization）」が適用される.

Output = LayerNorm(x+ Sublayer(x)) · · · (3.5)

この構造により、数百層に及ぶ深層モデルであっても安定した学習が可能となっている.本
研究で提案するターミナルアトラクタを用いた学習則は、これらの構造的特性を維持しつ
つ、プルーニングによって W がスパースになった状態での再最適化を加速させるもので
ある.

§ 3.3 事前学習と転移学習のメカニズム
3.3.1 自己教師あり学習

大規模言語モデルの学習プロセスにおける最大の特徴は、人間によるラベル付け（アノ
テーション）を必要としない「自己教師あり学習（Self-Supervised Learning）」を採用して
いる点にある.従来の教師あり学習では、入力 x と正解ラベル y のペアが必要であったが、
LLMの学習データとなるインターネット上のテキスト（Common Crawl, Wikipedia等）は
ラベルを持たない.そこで、テキストデータそのものから「入力」と「正解」を自動的に生
成する手法が用いられる.具体的には、入力されたテキストの一部を隠し（マスクし）、そ
の隠された部分を周囲の文脈から予測するタスクをモデルに課す.このプロセスを通じて、
モデルは単語の意味、文法構造、さらには文脈に含まれる世界知識や論理的推論能力を、
ニューラルネットワークのパラメータとして内在的に獲得する.この段階で獲得されたパラ
メータ θpre は、汎用的な言語理解能力を有しており、後述する転移学習の基盤となる.
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3.3.2 事前学習の目的関数とモデルアーキテクチャ

自己教師あり学習の具体的なタスク設定は、モデルのアーキテクチャによって主に以下
の二つに大別される.本研究で扱うGPT系列のモデルは、後者の因果的言語モデリングに
基づいている.

• (1) マスク化言語モデリング (Masked Language Modeling: MLM)

BERT（Bidirectional Encoder Representations from Transformers）などに代表され
る、Transformerのエンコーダ部分を用いた手法である.入力系列 X = {x1, x2, . . . , xT}
の中からランダムにいくつかのトークンを特殊トークン [MASK] に置き換え、その
元の単語を予測する.目的関数 LMLM は、マスクされたトークン集合 M に対する対
数尤度の最大化（負の対数尤度の最小化）として定義される.

LMLM(θ) = −
∑
i∈M

logP (xi|X\M ; θ)

ここで、X\M はマスクされていない周囲の全トークンを表す.MLMは双方向（Bidi-

rectional）の文脈を利用できるため、文の意味理解や分類タスクにおいて高い性能を
発揮するが、文章生成には不向きである.

• (2) 因果的言語モデリング (Causal Language Modeling: CLM)

GPT（Generative Pre-trained Transformer）シリーズで採用されている、Transformer

のデコーダ部分を用いた手法である.別名「自己回帰的言語モデリング（Autoregressive

Language Modeling）」とも呼ばれる.ある時点 t の単語 xt を、それ以前の単語列
x<t = {x1, . . . , xt−1} のみを条件として予測するタスクである.目的関数 LCLM は、系
列全体の結合確率を条件付き確率の積に分解し、その対数尤度を最大化することで
ある.

LCLM(θ) = −
T∑
t=1

logP (xt|x1, . . . , xt−1; θ)

この定式化は、未来の情報（カンニング）を防ぐために、Attention機構に「因果マ
スク（Causal Mask）」を適用することで実装される.CLMは、人間が文章を書くのと
同様に左から右へ単語を紡ぐことができるため、文章生成タスクにおいて圧倒的な能
力を持つ.本研究の実験対象であるGPT-2およびWikiTextデータセットを用いた学
習も、このCLMの枠組みで行われる.

3.3.3 転移学習とドメイン適応の理論

事前学習によって得られたパラメータ θpre を初期値とし、特定のタスクやドメインのデー
タセット Dtarget を用いてさらに学習を行うプロセスを「転移学習（Transfer Learning）」
あるいは「ファインチューニング」と呼ぶ.転移学習が有効である理論的根拠は、ディープ
ニューラルネットワークの階層的な特徴抽出能力にある.

• 下位層
文法や構文、単語の共起関係といった、言語に共通する普遍的な特徴を処理する.
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• 上位層
文脈の意味、意図、あるいは特定の専門知識といった、抽象度の高い情報を処理する.

事前学習済みのモデルは、既に下位層から中位層にかけて言語の普遍的な特徴を獲得し
ているため、ターゲットタスクのデータ量が少ない場合でも、ランダムな初期値から学習
するより遥かに高速かつ高精度に収束することが知られている. これを数式で表現すると、
事前学習はパラメータ空間における探索範囲を、言語として尤もらしい領域 Ωlang に限定
する役割を果たしており、ファインチューニングはその領域内からタスク最適解 θ∗ を探索
する局所最適化問題と見なせる.

3.3.4 現代的なファインチューニングの潮流：Instruction Tuning とRLHF

（Reinforcement Learning from Human Feedback：人間のフィードバックからの強
化学習）

• 指示チューニング (Instruction Tuning)

事前学習モデルは「続きを書く」ことは得意だが、「要約せよ」「翻訳せよ」といった
ユーザーの指示（Instruction）に従うとは限らない.そこで、(指示, 理想的な回答) の
ペアを用いた教師あり学習を行うことで、モデルのアライメント（人間への追従性）
を向上させる手法である.

• RLHF

RLHFでは、モデルの生成物に対する人間の選好（Preference）を報酬モデル（Reward

Model）として学習させ、PPO（Proximal Policy Optimization）などの強化学習アル
ゴリズムを用いて LLMを微調整する.

これらの手法はいずれも、巨大な事前学習モデル全体、あるいはその一部に対して追
加の学習（重み更新）を行う必要がある.特にRLHFなどは計算コストが極めて高い
ため、本研究が提案する「プルーニングによるモデルの軽量化」と「ターミナルアト
ラクタによる学習の高速化」は、これらの高度なチューニングを一般的な計算環境で
実現するための基盤技術として、極めて高い親和性と重要性を持つ.
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第4章

提案手法

§ 4.1 提案手法の全体概要
本章では、前章までに述べた大規模言語モデルの計算コスト問題と、従来の学習則における
収束速度の限界を同時に解決するための新規アルゴリズムを提案する.本研究の提案手法は、
「勾配情報に基づく動的プルーニング（Dynamic Pruning based on Gradient Information）」
と「ターミナルアトラクタによる有限時間収束」を融合させたハイブリッドな学習システ
ムである.

4.1.1 従来手法の限界と動的スパース化の必要性

従来、ニューラルネットワークの軽量化手法として広く用いられてきた「プルーニング」
は、一般に「学習 → 剪定 → 再学習」という静的かつ多段階のプロセスを経て行われるこ
とが多かった.このアプローチは、Lottery Ticket Hypothesis（宝くじ仮説）などでその有
効性が示唆されているものの、実用面においては致命的な二つの欠点を抱えている.

第一に、「再学習コストの増大」である.一度学習が完了したモデルを破壊し、再度精度
を回復させるプロセスは、実質的に二度手間であり、大規模モデルにおいては数百～数千
GPU時間の追加コストを意味する.これは、本研究が目指す「効率的なAI」の理念と矛盾
する. 第二に、「構造の不可逆性」である.一度削除された結合が、その後の学習過程で再び
必要となった場合でも、静的なプルーニングでは復活させることが困難である.これにより、
モデルは局所解に陥りやすくなり、最終的な汎化性能が犠牲になるケースが散見された.

これらの課題を克服するために、本研究では「動的スパース化（Dynamic Sparsity）」の
概念を採用する.これは、学習プロセスが完了するのを待つのではなく、学習の進行と並行
してリアルタイムにネットワーク構造を変化させるアプローチである.さらに、そこにター
ミナルアトラクタという強力な非線形ダイナミクスを導入することで、構造変化に伴う一
時的な精度の揺らぎを瞬時に収束させ、常に最適な準安定状態を維持しながら学習を進め
ることを可能にする.

4.1.2 提案手法のコアコンセプト：構造とダイナミクスの同時最適化

本提案手法の最大の独自性は、ニューラルネットワークの学習を「パラメータ空間（連
続値）の最適化」と「トポロジー空間（離散値）の最適化」の連成問題として捉え直した
点にある.通常の勾配法（SGDやAdam）は、固定されたネットワーク構造 G の上で、重
みベクトル w を更新する（w ← w − η∇E）.一方で、構造学習は重み w を固定し、最適
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図 4.1: テキストデータのフォーマット 図 4.2: システムのフロントページ

な構造 G を探索する.これらは互いに依存関係にありながら、従来は別々のフェーズで処
理されていた.本研究では、この二つを同一のタイムライン上で処理するために、以下のサ
イクルを構築した.

• 摂動としてのプルーニング重みの削除（wij = 0）を、システムに対する一種の「摂
動（Perturbation）」あるいは「外乱」として定義する.物理学的に言えば、これはエ
ネルギー地形（Loss Landscape）における現在の安定点から、強制的に状態を遷移さ
せる行為に等しい.

• 復元力としてのターミナルアトラクタ摂動によって不安定化したシステムを、ターミ
ナルアトラクタの持つ「有限時間収束性」によって、新たな（より低次元の）安定平
衡点へと強力に引き込む.通常の学習則（リプシッツ連続な力学系）では、この引き込
みに無限の時間を要するが、項を導入することで、摂動の直後から急速なリカバリー
が可能となる.

この「破壊（プルーニング）」と「再生」の高速なサイクルこそが、脳の可塑性（Plasticity）
を模倣した本手法の核心であり、これによりモデルは不要な贅肉を削ぎ落としつつ、常に
高いパフォーマンスを維持し続けることができる.

4.1.3 アルゴリズムの全体処理フロー

提案システムの具体的な処理フローを詳述する.本アルゴリズムは、事前学習済みの大規
模言語モデル（Pre-trained LLM）を入力とし、軽量化および最適化されたスパースモデル
を出力とする.

• Step 1: 初期化とデータセットの準備 (Initialization) まず、WikiText-2などのコー
パスを用い、学習データを K 分割する（交差検証のため）.事前学習済みの重みパ
ラメータ Winit をロードし、初期のスパースティ（疎性）は 0（全結合状態）からス
タートする.ここで重要なのは、完全にランダムな初期値ではなく、ある程度言語構
造を学習した状態からスタートすることで、TAが引き込むべき「大域的なアトラク
タ（Global Attractor）」の盆地（Basin of Attraction）の中に初期状態を置くことで
ある.
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• Step 2: サリエンシー（重要度）の動的計算 (Dynamic Saliency Calculation) 学習の
各ステップ（または特定の間隔）において、全パラメータの重要度 Sij を計算する.本
研究では、単なる重みの絶対値（Magnitude）ではなく、損失関数 E に対する感度を
考慮した「一次近似勾配スコア」を採用する.

Sij = |wij ·
∂E

∂wij

| (x) (4.1)

この指標は、「その重みを削除した場合に、損失関数がどれだけ変化するか」を近似
的に表している.勾配 ∂E

∂wij
が大きい重みは、現在の学習において活発に更新されてい

る（＝学習余地がある）ことを意味し、これを保存することは学習の停滞を防ぐ上で
重要である.

• Step 3: 適応的プルーニングの実行 (Adaptive Pruning) 算出されたサリエンシーに基
づき、下位 R(t) 具体的には、損失の減少が停滞している（プラトーに達している）
場合は、構造的な変化を促すために R(t) を一時的に高め、逆に損失が激しく振動し
ている場合は R(t) を下げて系を安定させる.この適応的な制御により、「過剰な剪定
による精度の崩壊」と「保守的な剪定による圧縮不足」のトレードオフを自動的に調
整する.

• Step 4: ターミナルアトラクタ項による重み更新 (TA Weight Update) プルーニング
マスク M を適用した後の重み W ′ = W ⊙M に対し、ターミナルアトラクタ則に基
づいた更新を行う.

∆w = −η
(
∇E + α

Eβ

||∇E||2
∇E

)
(x) (4.2)

この更新式における第二項（TA項）が、プルーニングによって生じた誤差 E の上昇
を検知し、特異点（Singularity）の効果によって勾配ベクトルを増幅させる.これに
より、残された結合（生き残った重み）に対して、「削除された重みの役割を補完せ
よ」という強力なバイアスがかかり、パラメータの再配置が急速に進む.

• Step 5: 評価とループ一定のエポック数ごとに検証データ（Validation Set）を用いて
モデルの Perplexity（PPL）およびスパース率を評価する.目標とするスパース率ま
たは精度に到達するまで、Step 2～4を反復する.

4.1.4 ターミナルアトラクタによる「意図的な」不安定性の収束

本手法を制御工学的な視点から解釈すると、プルーニングとはシステムに対する「構造
的な外乱」であり、通常であればシステムを不安定化させる要因である.しかし、本研究で
はこの不安定性を「探索の原動力」として積極的に利用する.

従来の確率的勾配降下法（SGD）では、局所解（Local Minima）にトラップされると、
そこから抜け出すのには稀に起こる大きな勾配ノイズを待つしかなかった.対して本手法で
は、プルーニングによって意図的にエネルギー地形を変化させ、局所解の底を浅くする（あ
るいは消滅させる）. その瞬間に、TAの強力な収束力が作用することで、システムは浅く
なった局所解を飛び出し、より深く安定した、かつより低次元の（スパースな）解へと遷
移していく.
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この「局所解からの脱出（Escape）」と「新解への着地（Convergence）」のメカニズムこ
そが、提案手法が高い圧縮率と高精度を両立できる理論的根拠である.TAが存在しなけれ
ば、プルーニングによる外乱は単なる精度の劣化（発散）を招くだけだがターミナルアト
ラクタが存在することで、それは「より良い構造への進化」へと昇華されるのである.

§ 4.2 勾配情報に基づいた動的プルーニングアルゴリズム
ニューラルネットワークのプルーニングにおいて、最も重要な決定事項は「どのパラメー
タを削除するか（Selection Criteria）」と「いつ、どれだけ削除するか（Scheduling）」の 2

点に集約される.本節では、本研究で提案する動的プルーニングの核心となるこれら二つの
アルゴリズムについて詳述する.

4.2.1 損失関数のテイラー展開に基づくサリエンシーの定義
従来のプルーニング手法、特にMagnitude Pruning（重みの絶対値に基づく剪定）は、「絶
対値が小さい重みは、ネットワークの出力に対する寄与が小さい」という経験則に基づいて
いる.しかし、非線形性が強い深層学習モデルにおいては、この仮定が必ずしも成立しない
場合がある.例えば、活性化関数の飽和領域付近にある重みは、値が大きくても勾配がほぼ
ゼロであり、学習に寄与していない可能性がある.逆に、値がゼロに近い微小な重みであっ
ても、その勾配が極めて大きく、次の更新で大きく成長しようとしている「芽」のような
パラメータも存在する.これらを一律に削除することは、学習のポテンシャルを摘む行為に
等しい.そこで本研究では、パラメータの重要度（サリエンシー：Saliency）を、損失関数
E に対する感度（Sensitivity）として数学的に定義する.ある重み w を 0 にする（削除す
る）ことによる損失関数 E の変化量 ∆E は、摂動 ∆w = 0− w = −w を与えたときの値
として、テイラー展開により次のように近似できる.

∆E = E(w +∆w)− E(w) ≈ ∂E

∂w
∆w +

1

2
∆wTH∆w +O(||∆w||3) (x) (4.3)

ここで、H はヘッセ行列（Hessian Matrix: 二階微分行列）である.LeCunらが提案した
OBD（Optimal Brain Damage）やHassibiらのOBS（Optimal Brain Surgeon）は、この第
二項（ヘッセ行列）までを考慮する手法であるが、数億～数千億パラメータを持つ LLMに
おいて、巨大なヘッセ行列の逆行列を計算することは計算量的に不可能である（O(N3)の
コストがかかるため）.したがって、本研究では第一項のみを用いた一次近似（First-order

Taylor Approximation）を採用する.プルーニングにおける摂動は ∆w = −w であるため、
損失の変化量の絶対値は次のように近似される.

Sij =

∣∣∣∣ ∂E∂wij

· (−wij)

∣∣∣∣ = |wij · gij| (x) (4.4)

ここで、gij =
∂E
∂wij
は誤差逆伝播法によって得られる勾配である.このスコア Sij は、「現在

の重みの大きさ」と「その重みが誤差に与える影響力（勾配）」の積で表される.これによ
り、「値は小さいが、学習の方向性を決定づける重要な重み」や「値は大きいが、もはや学習
が進んでいない重み」を適切に識別することが可能となる.本手法は、Magnitude Pruning

の計算効率の良さ（O(1)）を維持しつつ、Hessianベースの手法に近い理論的な妥当性を担
保する、LLMに最適な折衷案であると言える.
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図 4.3: ユーザー辞書のフォーマット（csv）

4.2.2 全体層を考慮したグローバル・プルーニング戦略

重要度 Sij を算出した後、具体的にどの重みをマスクするかを決定する際には、層（Layer）
ごとの閾値を設ける「ローカル・プルーニング」と、モデル全体の全パラメータを比較して
閾値を決定する「グローバル・プルーニング」の二つの選択肢がある.Transformerモデル、
特に LLMにおいては、層によって役割や冗長性が大きく異なることが知られている.例え
ば、入力に近い浅い層は構文的な特徴を抽出するため冗長性が低く、逆に出力に近い深い
層やFFN（Feed-Forward Networks）の中間層は、パラメータ数が多く過剰な冗長性を含ん
でいる傾向がある.もしローカル・プルーニングを採用し、全層一律に「30％削減」のよう
な制約を課すと、情報量が詰まった重要な層（ボトルネック層）を破壊してしまい、モデ
ル全体の性能が著しく低下するリスクがある.そのため、本研究ではグローバル・プルーニ
ング戦略を採用する.具体的には、全層の全パラメータのスコア {Sall} を一つのリストに集
約してソートし、モデル全体で下位 X% に相当する閾値 θglobal を動的に決定する.

M
(l)
ij =

{
1 (S

(l)
ij ≥ θglobal)

0 (S
(l)
ij < θglobal)

(x) (4.5)

この戦略により、冗長な層（例えば FFNの第 2層など）からは集中的にパラメータが削減
され、重要な層（AttentionのQuery射影行列など）は保護されるという、「適者生存」の
原理がモデル全体のアセンブリレベルで自然に実現される.

データの前処理

4.2.3 学習の安定度に応じた動的プルーニング率の制御

いつ、どれだけのパラメータを削除するかという「プルーニング率（Sparsity Rate）」の
制御は極めて重要である.固定のレートを適用し続けると、学習初期の不安定な段階で重要
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な結合を誤って削除してしまい、その後の学習不能（Layer Collapse）を引き起こす恐れが
ある.逆に、学習が進み誤差が収束してきた段階では、モデルは安定しているため、より大
胆なプルーニングが可能となるはずである.そこで本研究では、学習の進行状況（Step）と
モデルの安定度（Loss Stability）に基づいた、以下の動的スケジュール関数 R(t) を導入
する.

R(t) = Rtarget ·
(
1− exp

(
−t− twarmup

τ

))
· α(t) (x) (4.6)

ここで各項の意味は以下の通りである.ウォームアップ期間 (twarmup):学習開始直後の N ス
テップ間はプルーニングを行わず（R(t) = 0）、パラメータを十分に学習させる.これは、初
期値のランダム性に起因する誤ったスコア評価を防ぎ、TAが作用するための適切な「初期
軌道」を形成するために不可欠である.指数関数的漸近:ウォームアップ後は、目標とする
最終スパース率 Rtargetに向けて、時定数 τ で指数関数的にプルーニング率を上昇させる.

これにより、急激な構造変化（ショック）を和らげ、TAによる修復を間に合わせる猶予を
与える.安定度係数 α(t):さらに、本研究独自の工夫として、損失の移動平均 Eavg とその
標準偏差 σE を用いた係数を乗じる.

α(t) =
1

1 + λ(σE(t)/Eavg(t))
(x) (4.7)

損失が激しく振動している（σE が大きい）場合は α(t) が小さくなり、プルーニングを抑
制する.逆に学習が安定している場合は α(t) ≈ 1 となり、予定通りの削減が行われる.この
適応的な制御機構により、本アルゴリズムは「学習が順調なときには積極的に無駄を削ぎ
落とし、難航しているときには構造維持を優先する」という、あたかも生物が環境ストレ
スに応じて代謝を調整するかのような自律的な振る舞いを獲得する.

4.2.4 マスクの更新と「パラメータの復活」
本手法における動的プルーニングのもう一つの重要な特徴は、一度 0 になった重み（マ
スクされた重み）にも復活のチャンスが与えられる点である.通常のプルーニング実装では、
マスク Mij = 0 となった重みは更新されず、永遠に死んだままとなる.しかし本研究では、
勾配計算自体はマスクされた重みに対しても（バックグラウンドで）行われている点に着
目する.ステップ t においてマスクされている重み wij であっても、その潜在的な勾配 gij
が非常に大きくなり、重要度スコア Sij = |wij · gij|（ここでは w の代わりに仮想的な大き
さ、あるいは累積勾配を用いるなどのバリエーションがあるが、本実装では直前の値を保
持）が閾値 θglobal を上回った場合、次ステップ t + 1 でマスク Mij が 1 に戻される.この
「パラメータの復活（Regrowth）」メカニズムと、次節で述べるターミナルアトラクタの強
力な収束作用が組み合わさることで、モデルは固定された部分構造に縛られることなく、探
索空間の中を動的に移動しながら最適なネットワークトポロジーを発見することが可能と
なる.

§ 4.3 ターミナルアトラクタ項を付加した重み更新則の実装
前節で述べた動的プルーニングにより、ニューラルネットワークのパラメータ空間は、学
習の進行に伴い断続的に次元削減が行われる.この「構造的な摂動」によって引き起こされ
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る損失（Loss）の一時的な増大を、通常の勾配法よりも遥かに高速に、かつ理論的に保証
された時間内で収束させるための核心技術が、本節で詳述する「ターミナルアトラクタに
基づく重み更新則」である.

本節では、第 2章で定義した数学的原理を、深層学習フレームワーク（PyTorch等）上
で動作する具体的なオプティマイザとして実装するためのアルゴリズム、および数値計算
上の不安定性を回避するための工学的な工夫について論じる.

4.3.1 更新式の定式化とTA項の導出

標準的な確率的勾配降下法（SGD）において、重み w の更新は、損失関数 E の勾配 ∇E
に学習率 η を乗じた値を減算することで行われる.

w(t+1) = w(t) − η∇E(w(t)) (x) (4.8)

この更新則はリプシッツ連続であり、誤差がゼロに近づくにつれて勾配も小さくなるため、
収束速度は指数関数的（漸近的）に減速する.これに対し、本研究ではターミナルアトラク
タの原理を導入し、誤差 E そのものを駆動力（ポテンシャル）として利用する「ターミナ
ルアトラクタ項」を追加した以下の更新式を提案する.

w(t+1) = w(t) − η
(
(1− λ)∇E(w(t)) + λ ·ΨTA(w

(t))
)
(x) (4.9)

ここで、λ ∈ [0, 1]は通常勾配とTA項の混合比率を制御するハイパーパラメータである.ΨTA

はTA項ベクトルであり、以下のように定義される.

ΨTA(w) = γ
E(w)β

||∇E(w)||2 + ϵ
∇E(w) (x) (4.10)

この式 (4.9)において、各変数は以下の物理的意味を持つ.

• E(w)β (Error Potential) 現在の誤差の β 乗（0 < β < 1）.E が大きいときは大きな
値を持ち、更新を加速させる.逆に E が微小になると、この項が非リプシッツ的な特
異性を生み出し、有限時間収束を実現する.

• ||∇E(w)||2 (Gradient Norm Normalization) 勾配ベクトルの大きさの二乗.これを分
母に置くことで、勾配の大きさそのものではなく、勾配の「方向」に対して、誤差ポ
テンシャルに基づいたスケーリングを行う.これにより、勾配が消失しかけている平
坦な領域（プラトー）でも、大きな更新ステップを維持できる.

• γ (Acceleration Factor) ターミナルアトラクタの効果の強さを決定する係数.

4.3.2 数値的不安定性の回避と実装上の工夫

式 (4.7)をそのまま計算機上で実装する場合、数学的な理想状態とは異なる「数値的な不安
定性（Numerical Instability）」の問題に直面する.特に、学習が進行して E ≈ 0 となった
場合、あるいは勾配消失により ||∇E|| ≈ 0 となった場合に、分母がゼロに近づき、更新量
が無限大に発散（NaN: Not a Number）するリスクがある. 本研究では、大規模言語モデ
ル（LLM）の安定学習を実現するために、以下の 3つのロバスト化処理を実装した.
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(1) ϵ-安定化項 (Epsilon Stabilization)

分母のゼロ除算を防ぐため、常に微小な正定数 ϵ（本実験では 1e− 8）を加算する.

Denominator = ||∇E||2 + ϵ (x) (4.11)

これにより、勾配が極端に小さい場合でも更新量の爆発を抑制し、計算の安全性を担
保する.

(2) 勾配クリッピングとターミナルアトラクタ項の飽和処理

　ターミナルアトラクタ項はその性質上、特異点付近で急激に値が増大する.これが
学習率 η と掛け合わされた際、パラメータが大きく飛びすぎて発散することを防ぐ
ため、ターミナルアトラクタ項 ΨTA のノルムに対して上限値 C を設けるクリッピン
グ処理を行う.

if ||ΨTA|| > C, then ΨTA ← ΨTA ·
C

||ΨTA||
(x) (4.12)

(3) 損失依存型スケーリング (Loss-dependent Scaling)

学習の終盤において、損失 E が計算機イプシロンに近いレベルまで低下した場合、
ターミナルアトラクタの強力な引き込みは逆に振動（Oscillation）を招く恐れがある.

そこで、損失の値に応じてターミナルアトラクタの影響力を減衰させる動的係数 α(E)

を導入した.

α(E) = tanh(k · E) (x) (4.13)

この関数により、誤差がある程度大きい間は α ≈ 1 としてターミナルアトラクタが
フルに機能し、誤差が極小になると α → 0 となって通常の勾配法へと滑らかに移行
する.

4.3.3 AdamW オプティマイザとの統合

現代の大規模言語モデル学習において、単純な SGDが使われることは稀であり、適応的学
習率を持つAdamW（Adam with Weight Decay）が標準的に用いられている.本研究の提
案手法を SOTA（State-of-the-Art）モデルに適用するためには、ターミナルアトラクタの
概念をAdamWの更新則に統合する必要がある.本実装では、AdamWが計算する「モーメ
ント（慣性項 mt）」と「適応的学習率（分散項 vt）」によって補正された更新ベクトルに対
し、ターミナルアトラクタ項を加算的なバイアスとして注入する手法を採用した.

Adamステップ

通常の勾配 gt から、モーメント推定値 m̂t と v̂t を計算し、基本更新量 ∆wAdam を
得る.

∆wAdam = −η m̂t√
v̂t + ϵ

(x) (4.14)
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TAステップ

現在の損失 Et と勾配ノルム ||gt|| から ターミナルアトラクタ項 ΨTA を計算する.

ハイブリッド更新

最終的な更新式は以下のようになる.

wt+1 = wt +∆wAdam − ηTA ·ΨTA (x) (4.15)

4.3.4 プルーニング後の「回復フェーズ」における挙動解析

本節の最後に、この更新則が動的プルーニングと組み合わさった際にどのようなダイナ
ミクスを示すかを解析する.プルーニング（マスク適用）が実行された直後のステップ t に
おいて、モデルの表現力は急激に低下し、損失 Et はスパイク状に跳ね上がる.通常のオプ
ティマイザでは、この増大した誤差に対して勾配も大きくなるものの、その反応は線形的
であり、元の精度に戻るまでに数千ステップを要することも珍しくない.一方、提案手法の
ターミナルアトラクタ項には E(w)β が含まれている.損失 E が跳ね上がった瞬間、この項
は非線形に（冪乗則に従って）急増し、更新ベクトル ΨTA を劇的にブーストする.これに
より、システムには「現在の構造（残された重み）の中で、誤差を最小化できる地点へ即
座に移動せよ」という強力な力が働く.結果として、プルーニングによって生じた「傷（精
度の低下）」は、ターミナルアトラクタの作用によって瞬時に修復される.この「自己修復
機能」とも呼べる挙動こそが、本研究が大規模言語モデルのスパース化学習において高い
圧縮率と精度維持を両立できた最大の要因である.
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第5章

実験結果並びに考察

§ 5.1 実験の概要
本章では、前章で提案した「ターミナルアトラクタ（TA）を用いた動的プルーニング手
法」の有効性を検証するための数値実験について述べる.大規模言語モデルのファインチュー
ニングタスクにおいて、提案手法が従来手法と比較して、どの程度「学習収束の高速化」と
「モデルの軽量化」を両立できたかを定量的に評価し、その挙動について考察を行う.

使用データセット：WikiText-2

言語モデルの性能評価には、標準的なベンチマークデータセットであるWikiText-2 を使
用した.WikiText-2は、Wikipediaの検証済み記事から抽出された高品質なテキストデータ
であり、Penn Treebank (PTB) などの古いデータセットと比較して、より大規模な語彙数
と現実的な文脈依存関係を含んでいるため、モデルの長期記憶や文脈理解能力を測るのに
適している.

データの分割（Split）および件数は、データセットの標準仕様に従い以下の通りとした.

• 訓練データ (Train): 36,718件

• 検証データ (Validation): 3,760件

• テストデータ (Test): 4,358件

実験では、訓練データを用いてモデルのパラメータ更新を行い、各エポック終了時および
特定ステップごとに検証データを用いてPerplexity（PPL）を測定し、学習の進捗と過学習
の監視を行った.

5.1.2 実験モデルと計算環境

• 層数 (Layers): 12

• アテンション層数 (Attention Heads): 12

• 埋め込み次元 (Hidden Size): 768

• 最大系列長 (Context Length): 1024 トークン
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表 5.1: 学習ハイパーパラメータ一覧
パラメータ項目 設定値 備考
Learning Rate 5.0× 10−5 一般的な GPT − 2FT の初

期値
Weight Decay 0.01 過学習抑制のため
Optimizer AdamW β1 = 0.9, β2 = 0.999

Gradient Clipping 1.0 勾配爆発の防止
Max Steps / Epochs 3Epochs 約 18, 000Steps前後

表 5.2: 提案手法固有のパラメータ
パラメータ項目 記号 設定値 物理的意味
TA Acceleration γ 1.0 アトラクタの引き込

み強度
Singularity Power β 0.5 有限時間収束を決め

る冪指数
Target Pruning

Rate

Rtarget 30％ 最終的なパラメータ
削減目標

Pruning Schedule − Dynamic 勾配情報に基づく動
的変動

• 語彙サイズ (Vocab Size): 50,257

すべての実験は、Google Colaboratory上で実施した.主なハードウェア構成は以下の通
りである.

• GPU: NVIDIA T4 Tensor Core GPU (VRAM 16GB)

• CPU: Intel Xeon @ 2.20GHz

• RAM: 12GB

• Framework: PyTorch 2.0+, Transformers (Hugging Face)

5.1.3 ハイパーパラメータの設定

提案手法および比較手法の学習において、基本となるハイパーパラメータは公平性を期す
ために統一した.最適化アルゴリズムには AdamW を使用し、学習率は線形スケジューラ
（Linear Decay）を用いて減衰させた.

ターミナルアトラクタ（TA）および動的プルーニングに関わる固有のパラメータは、予
備実験に基づき以下の値に設定した.特に、実行ログより確認されたプルーニング率（Rate）
は 30％を目標値として設定している.
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図 5.1: AGIP損失 図 5.2: ベースライン損失

§ 5.2 実験結果と考察
5.2.1 損失関数の特異な挙動と自己修復

図 5.1の Training Loss の推移を見ると、Step 9,500 および Step 16,000 付近において、損
失が突発的に増大するスパイク（Spike）が観測される。通常の勾配法において、学習後半
でのこのような急激な Lossの悪化は学習の崩壊（発散）を意味することが多い。しかし、
本手法においては、このスパイクは動的プルーニングによる構造変化（パラメータの削除）
と、それに反応した TA項の活性化によって引き起こされた「意図的な不安定化」である
と解釈できる。特筆すべきは、スパイクの直後に Lossが急速に低下し、元の水準、あるい
はそれ以下へと瞬時に収束している点である。これは、TAの更新則に含まれる特異点効果
（Eβ 項）が働き、構造変化によって生じた誤差を強力な駆動力へと変換し、パラメータを
新たな最適解へと誘導したことを示唆している。

最後にアンケート調査における結果と考察を行う．
一個目に，「システムの操作性はわかりやすいか」という質問を行った．結果として，全
体的に好印象な評価を得ることができた．この結果から．システムの操作性は容易である
ことが考えられる．システム全体的に直観的に操作できるということが考えられる．
二個目に，「システムの機能は理解しやすいか」という質問を行った．結果として，好印
象な評価が四人であったが，残りの一人に関してはどちらでもないという意見であった．こ
の結果からシステムを初めて使う人でもある程度すぐにシステムの機能を理解することが
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図 5.3: 出力された 3Dグラフ

できるということがわかる．また，もう少し画面に出力されているものがどういうものな
のかを説明することで，よりシステムの機能を理解してもらうことができると考えられる．
三個目に，「レイアウトは適切か」という質問を行った．結果として，全体的に好印象な
評価を得ることができた．この結果から．グラフやボタン，テキストなどの表示位置が適
切であると考えることができる．
四個目に，「デザインは見やすいか」という質問を行った．結果として，全体的に好印象
な評価を得ることができた．この結果から，本システムの画面全体を通してのデザインが
見やすいということが考えられる．画面に表示する情報は必要最低限にしているためであ
ると考えることができる．一方で，二個目の質問で考察したように，システム機能の説明
を付け加えることを考えると，デザインの構成を考える必要がある．
五個目に，「ストレスなく利用することができたか」という質問を行った．結果として，全
体的にあまり好印象な結果を得ることができなかった．この結果から，システムの利用に
おいてはストレスを感じるということが考えられる．その理由として，システム全体の処
理時間の遅さがあげられる．システム全体の処理時間が遅いことで，ユーザーは待ってい
る時間がいこと，またロード画面が静止画であるため，いつまで待てばいいのかがわかな
いことなどが考得られる．この解決策として，マルチプロセスや分散処理を用いたスクレ
イピングの更なる高速化や，分かち書きの高速化などがあげられる．また，3Dグラフにお
ける描画処理も遅いため 3Dグラフの描画手法についても検討が必要である．さらに，ロー
ド画面に進捗バーなどを追加することで，処理が長くなってもあまりストレスなく利用す
ることができると考える．
六個目に，「クラスターの提示は適切であるか」という質問を行った．結果として，肯定

的な意見が三件，否定的な意見が一件，どちらでもないが一件となった．この結果から，入
力するキーワードによって，出力されるクラスターが異なり，キーワードによってはあま
り，適していないクラスターが出力されていることが考えられる．この理由として，今回
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用いたクラスタリング手法である k-meansでは外れ値による影響が多く，データによって
は，適していないクラスターが含まれる可能性がある．そこで，外れ値に強いクラスタリ
ング手法を用いることで，これらの問題は解決すと考えられる．
七個目に，「共起語ネットワークは適切であるか」という質問を行った．結果として，肯
定的な意見が三件，否定的な意見が一件，どちらでもないが一件となった．この結果から，
入力するキーワードの違いや，取得されるデータの違いによって，共起語ネットワークの
精度が異なることがあげられる．今回用いた simpson係数でしきい値を設定したが，この
しきい値が場合によってあまり適していないものであるということが考えられる．そこで，
すべての場合において適するようなしきい値に変更することで解決できると考えられる．
八個目に，「3Dグラフによる出力は適切であるか」という質問を行った．全体的に好印象
な評価を得ることができた．この結果から，3Dグラフによる共起語ネットワークの可視化
は有用であるということがわかる．3Dグラフで出力することで，よりインタラクティブな
グラフになることが考えられる．
九個目に，「効率的な特許探索を行えそうか」という質問を行った．結果として，全体的
に好印象な評価を得ることができた．この結果から，システムを用いずに行う特許探索よ
りも，システムを用いた特許探索の方が効率的であるということができる．特許全体を羅
列するだけではなく，散布図による可視化や，共起語ネットワークによる可視化を行うこ
とで，効率的な特許探索を行うことができると考える．
十個目に，「新しい知見を発見できそうか」という質問を行った．結果として，全体的に
好印象な評価を得ることができた．この結果から，実際にシステムを利用することで，新
しい知見を発見できると考えることができる．
また，自由記述では，「選択できる年数を増やした方がいい」という意見があり，入力さ
れるキーワードによって，取得される特許の数が違い 24年では十分な数の特許を取得する
ことができなかったことが考えられる．そこで，もう少し取得する年数を増やすか，それ
らのキーワードが含まれる特許が多く含まれる年からのスクレイピングなどがあげられる．
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表 5.3: アンケート結果

　



　



第6章

おわりに

　本研究では，莫大な量の特許群を分析することで，IPランドスケープ実施の支援を行
うシステムの開発を行った．既存の特許プラットフォームでは，膨大な特許文献データを
一気に集積し，特許全体をビッグデータとして分析を行うことは容易ではない．本システ
ムでは，大量の特許文を効率的に収集し，特許情報を整理整頓し，そのうえでデータマイ
ニングと機械学習の手法を駆使し，特許群から有用な知的財産情報を抽出，解析すること
を目的とした．このシステムを活用することで IPランドスケープの調査や技術トレンド分
析など，大規模な特許情報を活用した様々な業務支援を行った．
本研究で提案したシステムの特徴をまとめる．一つ目の特徴は，莫大な特許文章群をベ
クトル表現に変化し，そのベクトル空間上で潜在的なクラスタリングを行ったことである．
現在までに蓄積された膨大な特許文章は，技術の進歩や新たな発明に伴い年々増加してい
る．こうした文章群を一つの統一されたベクトル空間に投影することができれば，特許技
術の全体像や内在する構造を可視化し，俯瞰的な解釈が可能になると考える．これらによ
り，従来になりマクロな視点から特許技術の全体を捉え，新たな知見の発見につなげるこ
とができることを確認した．
二つ目の特徴は，共起関係の分析による共起語ネットワークを作成しそれらを 3Dグラ
フおよび 2Dグラフによって可視化を行ったことである．2Dグラフでは従来どおり共起語
間の関係を平面上で表現することができる．2Dグラフだけでなく 3Dグラフによる描写に
よって，従来よりもより多くの情報を見ることができまた空間的な表現を行うことができ
る．これらのことにより，いままでの分析では得られなかった新たな知見をを得られるこ
とである．
今後の課題として，実行時間の短縮があげられる．本研究ではスクレイピングによる処
理をマルチスレッドを用いることで高速化を図った．しかし，まだまだ処理の時間がかかっ
ており更なる高速化が可能だと考えれらる．そこでマルチプロセスやGPUを用いた並列処
理，他にも複数台のコンピュータを用いた分散処理などの手法が有効だと考えられる．さ
らに分かち書きの処理の高速化もあげられる．本手法で用いた分かち書きのモジュールで
ある Janomeはユーザー辞書の登録が容易であるのに対してデータの量が増えると処理時
間が長くなるという問題もある．そこで近年開発された Vibratoのような高速な分かち書
きシステムを用いることで高速に分かち書きを処理することができ使い勝手がよいシステ
ムになると考える．以上の点を今後改善・検討することで，本手法の実用性と性能を一層
向上させることができると考える．処理速度の向上こそが大規模データセットの分析では
不可欠な要件であるといえる．
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