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拡張直交配列を用いた混合水準の実験計画法に関する一考察
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あらまし 実験計画法では，最適な混合系直交計画を構成可能な水準数，因子数，実験回数，前提条件の値
の範囲を拡張していくことが重要な課題である．従来は，Orthogonal Arrays (直交配列，OA) を利用して構
成する方法が提案されてきた．本研究では，Augumented Orthogonal Arrays（拡張直交配列，AOA）を計画
と対応させる構成法を提案する．更に，AOA の定義を拡張して新たに提案した行列 Generalized Augmented

Orthogonal Arrays (一般化拡張直交配列，GAOA) と対応させる構成法を提案する．これにより，上記の範囲
が従来より拡張された．
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1. ま え が き

推測統計学の一分野である実験計画法は，構造式

（モデル）のパラメータを実験結果から推定するための

実験において，より少ない実験回数で，より高い精度

で推定できるような計画を求める分野である．実社会

では研究開発等の実験の場において利用される [1]．実

験計画法の用語を例で説明する（ [1], [2] 等参照）．例

えば，ある化学製品の製造において，温度と触媒の種

類による作用が製品の収率にどの程度影響を与えるか

を明らかにするための実験を考える．温度は 100度と

200度の 2種類，触媒の種類は Aと Bと Cの 3種類

を取りうるとする．このとき，因子 1（温度）は水準
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数が 2，因子 2（触媒）は水準数が 3である．温度，触

媒による特性値（収率）への影響が効果であり，特に

温度のみまたは触媒のみによる影響がそれぞれ因子 1

または 2の主効果，温度と触媒の組合せによる影響が

因子 1, 2の 2因子交互作用効果である．実験では，最

初にどの主効果，交互作用効果が存在するかという前

提条件を仮定した下で，因子を説明変数，特性値を目

的変数とした構造式を設定する．そしてどの温度，触

媒の組合せで実験するか計画を立てて実験し，実験結

果から構造式のパラメータである各効果を推定する．

実験計画法では，実験回数が少ないほど推定の精度

は低くなるという評価基準のトレードオフが生じる．

そこで，同じ実験回数の中で各効果に後述の線形変換

を施すことで得られた実数値の線形不偏推定量の分散

の最大値が最小となる計画を考える．本研究ではこの

ような計画を最適な計画と呼ぶ．

水準数，因子数，実験回数，前提条件を何らかの値

に固定した場合に，ある範囲で直交する直交計画が最

適な計画の一つとなる [2]．しかし，値によってはその

ような最適な直交計画の構成法が知られていない．し

たがって，最適な直交計画を構成可能な水準数，因子

数，実験回数，前提条件の値の範囲を拡張することは

重要な課題であると考えられる．定性的に述べると，
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より一般的な構造式における最適な直交計画の構成法

の研究が課題であるといえる．

従来，全ての因子の水準数が等しく，更に構造式に

おいて前提条件が均一であるときの最適な直交計画の

構成法が研究されてきた．ただし，構造式において，

ある自然数 kに対して k個以下の全ての因子の交互作

用効果のみを仮定するとき，本研究では前提条件が均

一であるという．例えば Orthogonal Arrays (直交配

列，OA)に計画を対応させる方法がある [4]．

なお，直交計画は符号理論と深い関係がある．例え

ば，OAは，後述する強さ tの直交計画に対応するが，

Reed Solomon符号にも対応する [4]．他にも，不均一

誤り訂正符号と直交計画の関係が示されている [3]．

本研究では，構造式において前提条件が均一ではな

いときの最適な混合系直交計画の構成法を考える．た

だし，本研究では，因子によって水準数が異なる実験

を混合水準の実験と呼び，そのときの直交計画を混合

系直交計画と呼ぶ．一般的な混合系直交計画の構成法

の提案は難しいが，特別な場合においては構成法が研

究されてきた．従来，OAを利用して構成する方法と

して，多水準作成法 [1]等が提案されている．

本研究では，従来 [5], [6] で構成が研究されてき

た Augmented Orthogonal Arrays (拡張直交配列，

AOA) を計画に対応させる新たな計画の構成法と，

AOAの定義を拡張して新たに提案した行列 General-

ized Augmented Orthogonal Arrays (一般化拡張直

交配列，GAOA)を計画に対応させる新たな計画の構

成法を提案する．また，最適な直交計画を構成可能な

水準数，因子数，実験回数，前提条件の値の範囲が提

案法で従来より拡張されたこと，すなわち，より一般

的な構造式で最適な直交計画を提案法で構成可能であ

ることを示す．

本論文は次のように構成される．2.では，実験計画

法の問題設定と直交計画に関する準備を行う．3. で

は，直交計画の構成法の従来研究を述べる．4. では，

本研究として，AOAを利用した最適な混合系直交計

画を提案する．5.では，本研究として，AOAの定義

を拡張した概念である GAOA，及びそれを利用した

最適な混合系直交計画を提案する．

2. 準 備

本節では，実験計画法の問題設定を述べた後，その

もとで最適な直交計画について定義する．更に，直交

計画と対応する直交配列について定義する．

2. 1 実験計画法の問題設定

本節では，実験計画法の問題設定及び計画の最適性

に関する定理を述べる．

最初に，[2], [7] に基づき本研究の実験計画法におけ

る説明変数ベクトルと目的変数の関係を述べる．説明

変数ベクトルは離散変数ベクトル x，目的変数は連続

変数 yx とする．x = (x1, . . . , xn) ∈ Ω
def
=

∏n

i=1
Fqi

を n ∈ N次元ベクトル，Yx をベクトル x ∈ Ωに依存

する連続確率変数，yx ∈ Rを確率変数 Yx の実現値と

する．ただし，q1, . . . , qn を素数の累乗とし，位数 qi

の体を Fqi と表す．任意のベクトル x ∈ Ωに対し，確

率変数 Yx が

Yx = θ0 +

n∑
k=1

∑
{i1,...,ik}∈A

θi1,...,ik
xi1 ,...,xik

+ ε (1)

で定まると仮定する．ここで，非空集合 A ⊂ 2[n] は，

J ′ ⊂ J ∈ Aを満たす任意の集合 J, J ′ について，J ′ ∈
Aを満たすとする．ただし，[n]

def
= {1, . . . , n}．また，

θ0 を実定数とし，θ
i1,...,ik
xi1 ,...,xik

を (i1, xi1), . . . , (ik, xik )

に依存する実定数とする．更に，εを，平均 0，分散 σ2

の正規分布に従う連続確率変数とする．更に，任意の

k∈ [n]，{i1, . . . , ik} ∈ A，xi1 ∈ Fqi1
, . . . , xik ∈ Fqik

について次式 (2)が成立するとする．

∑
xi1∈Fqi1

θi1,...,ik
xi1 ,...,xik

= . . . =
∑

xik
∈Fqik

θi1,...,ik
xi1 ,...,xik

=0.

(2)

関係式 (1)を構造式と呼ぶ．また，ベクトル x ∈ Ω

を実験する水準組合せと呼び，実数値 yx ∈ Rを水準

組合せが xのもとでの特性値と呼ぶ．更に，各 i ∈ [n]

を因子と呼び，以降，因子であることを強調したい場

合，Fi と書く．更に，各 i ∈ [n] において xi ∈ Fqi

を因子 Fi の水準と呼び，水準 xi が取りうる値全体

の個数 qi を因子 Fi の水準数と呼ぶ．更に，θ0 を中

心効果と呼び，θ
i1,...,ik
xi1 ,...,xik

を因子 Fi1 , . . . , Fik の水準

を xi1 , . . . , xik としたもとでの因子 Fi1 , . . . , Fik の k

因子交互作用効果と呼ぶ．特に，k = 1 の場合の θi
xi

を，因子 Fi の主効果と呼ぶ．式 (2)は，各 θ
i1,...,ik
xi1 ,...,xik

が因子 Fi1 , . . . , Fik の交互作用効果により生じる中

心効果 θ0 からの差を表すことを意味する．更に，集

合 A ⊂ 2[n] を，前提条件の集合 [7] と呼ぶ．これは，

{i1, . . . , ik} ∈ Aを満たす因子 Fi1 , . . . , Fik の交互作

用効果を仮定するという前提条件の集合を表す．集合
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Aに仮定する性質は，複数の因子の交互作用効果を仮

定する場合，その因子の組合せの中に含まれる因子の

組合せの交互作用効果も仮定することを意味する．ま

た，確率変数 εを偶然誤差と呼ぶ．

［例 2.1］ n = 5，q1 = · · · = q4 = 5，q5 = 25とする．

A = {{1},. . . ,{5},{1, 2},{1, 3},{1, 4},{2, 3},{2, 4},
{3, 4}}，すなわち，任意の x = (x1, . . . , x5) ∈ Ω に

対し，Yx = θ0 + θ1
x1 + · · · + θ5

x5 + θ1,2
x1,x2 + θ1,3

x1,x3 +

θ1,4
x1,x4 + θ2,3

x2,x3 + θ2,4
x2,x4 + θ3,4

x3,x4 + εと仮定する．これ

は，因子 F1, . . . , F5の主効果と，因子 F1と F2，F1と

F3，F1と F4，F2と F3，F2と F4，F3と F4の 2因子

交互作用効果を仮定することを意味する．また，θ3,4
0,x4

+

· · · + θ3,4
4,x4

= θ3,4
x3,0 + · · · + θ3,4

x3,4 = 0等が成立する．

式 (2)から，i1, . . . , ik ∈ A，k ∈ [n]となる全ての

i1, . . . , ik 及び xi1 ∈ Fqi1
\{0}, . . . , xik ∈ Fqik

\{0}
となる全ての xi1 , . . . , xik について交互作用効果

θi1,...,ik
xi1 ,...,xik

を求めると，他の交互作用効果も求めら

れる．以降は上記の範囲の交互作用効果にのみ着目す

る．更に，本研究では，交互作用効果 θ
i1,...,ik
xi1 ,...,xik

に対

して，構造行列を正規直交化するような線形変換をす

ることで得られる実数値 θ̄
i1,...,ik
xi1 ,...,xik

に着目する [2]．

次に，計画について定義する．

［定義 2.1］（計画） 全ての行ベクトルが Ω の元であ

るN ×n行列X を計画と呼び，N を実験回数と呼ぶ．

[2] は計画 X を集合 Ω の部分集合としたが，本研

究では簡単な記述のため行列とする．

次に，実験の流れを述べる．最初に，集合 Aを定め

構造式 (1)を仮定する．ただし，各効果は未知だが式

(2)を満たし，偶然誤差 εは平均 0，（既知の）分散 σ2

の正規分布に従うと仮定する．次に構造式 (1)を基に

計画 X を定める．最後に，実験を行い，得た実験結

果 (x, yx)x∈X̃ から全ての {i1, . . . , ik} ∈ A，k ∈ [n]

と全ての xi1 ∈ Fq1\{0}, . . . , xik ∈ Fqik
\{0} に対し

て実数値 θ̄
i1,...,ik
xi1 ,...,xik

の推定値を求める．ただし，行列

X の行全体の集合を X̃(⊂ Ω) と表す．期待値が真の

パラメータの値になることが望ましいため，推定量は

線形不偏推定量 [2] とする．また，推定の精度を高め

るため，パラメータの真の値からの推定値のばらつき，

すなわち，推定量の分散は小さくすることが望ましい．

次に，実験計画法における評価基準について述べる．

本研究における評価基準は，各実数値 θ̄
i1,...,ik
xi1 ,...,xik

の線

形不偏推定量 ˆ̄θ
i1,...,ik
xi1 ,...,xik

の分散 V
[
ˆ̄θ
i1,...,ik
xi1 ,...,xik

]
の最

大値と，実験回数 N とする．評価基準に関して，以

下の定理が成立する．

［定理 2.1］ [2], [7] 実験回数が N である任意の計画

X に対し，全ての {i1, . . . , ik} ∈ A，k ∈ [n] におけ

る因子 Fi1 , . . . , Fik の k因子交互作用効果の線形不偏

推定量 ˆ̄θ
i1,...,ik
xi1 ,...,xik

の分散の最大値は以下を満たす．

max V
[
ˆ̄θi1,...,ik
xi1 ,...,xik

]
≥ qi1 · · · qik

N
σ2. (3)

ただし，左辺の最大値は，xi1 ∈ Fqi1
\{0}, . . . , xik ∈

Fqik
\{0}となる範囲のもとでとる．
本研究では，分散 V

[
ˆ̄θ
i1,...,ik
xi1 ,...,xik

]
の最大値を取ると

きは，常に上記の範囲のもとでとるとする．

［定義 2.2］（最適な計画） 定理 2.1 の条件のもと，

式 (3) の等号を満たす計画 X を本研究では最適な

計画と呼ぶ．

2. 2 直 交 計 画

本節では，直交計画を定義し，直交計画の最適性に

ついて述べる．

［定義 2.3］（行列の直交） t ∈ [n]，i1, . . . , it ∈ [n]と

する．行列Xの第 i1, . . . , it列から成るN×t部分行列

が
∏t

l=1
Fqil

の全ての元を丁度同じ回数だけ含むとき，

本研究では行列X は第 i1, . . . , it列で直交するという．

計画 X が第 i1, . . . , it 列で直交するとき，因子

Fi1 , . . . , Fit においてどの水準の組合せでも同じ回

数（N/ (qi1 . . . qit)回）だけ実験できる．

［定義 2.4］（直交計画 [2]） 因子の集合の集合 D ⊂
2[n] をとる．任意の L = {i1, . . . , i|L|} ∈ D に対し，

第 i1, . . . , i|L| 列が直交する計画を本研究では集合 D

での直交計画と呼ぶ．

［定理 2.2］（ [2], [7]） 前提条件の集合 A ⊂ 2[n] から

一意に定まる集合 DA を式 (4)で定義する．

DA
def
= {J�K ⊆ 2[n] | J, K ∈ A}. (4)

ただし，� は対称差を表す．集合 DA での直交計画

は，最適な計画である．

3. 従 来 研 究

本節では，直交計画の構成法に関する従来研究を述

べる．本研究では，q1 = · · · = qn = q を満たす q が

存在するときの直交計画を同水準系直交計画と呼び，

そうでないときの直交計画を混合系直交計画と呼ぶ．

3. 1 最適な同水準系直交計画とその構成法

本節では，最適な同水準系直交計画を導出し，それ

をOrthogonal Arrays (OA)に計画を対応させること

19



電子情報通信学会論文誌 2020/1 Vol. J103–A No. 1

で構成する従来の方法を述べる．

最初に，本節における構造式の仮定を述べる．

［仮定 3.1］ ある素数の累乗 q と k ∈ [n] が存在し，

q1 = · · · = qn = q，A =
{
J ⊆ 2[n] | k ≥ |J |

}
を満た

すとする．これは，ある k ∈ [n]に対し，全ての k 因

子以下の交互作用効果の存在を仮定し，それ以外の交

互作用効果の存在は仮定しないことを意味する．

次に，強さ tの直交計画について定義する．

［定義 3.1］（強さ tの直交計画 [2]） t ∈ [n] とする．

集合D
def
=

{
L ⊆ 2[n] | t ≥ |L|

}
での直交計画を強さ t

の直交計画と呼ぶ．

定理 2.2 より，仮定 3.1 のもとでは，強さ 2k の直

交計画，すなわち DA =
{
L ⊆ 2[n] | 2k ≥ |L|

}
での

直交計画が最適であることが示される [2]．

次に，強さ t の直交計画の構成法について述べる．

この計画は，次に定義する Orthogonal Arrays (OA)

を利用することで構成できる．

［定義 3.2］（Orthogonal Arrays [4]） 任意の t ∈ [n]

列が直交するような体 Fq 上 N × n 行列 X を Or-

thogonal Arrays (直交配列，OA) と呼び，OA

(N, n, q, t)と書く．

上記の定義からわかるとおり，OA(N, n, q, t) の行

ベクトル全体の集合は，実験回数 N，因子数 n，水準

数 q，強さ tの直交計画となる [4]．すなわち，強さ t

の直交計画を構成するには，それに対応する OAを構

成すればよい．OAの構成法については，従来様々な

方法が提案されている [4]．

3. 2 最適な混合系直交計画とその構成法

本節では，最適な混合系直交計画とその構成法に関

する従来研究について述べる．

最初に，本節における構造式の仮定を述べる．

［仮定 3.2］ ある素数の累乗 q と t, s ∈ N が存在し，

n ≥ t ≥ s，q1 = · · · = qn−1 = q，qn = qt−s 及び

A=
{
J ⊆2[n]

∣∣∣
(
|J |≤

⌊
s+1

2

⌋)
∨

(
|J |≤

⌊
t

2

⌋
∧n /∈J

)}

(5)

を満たすとする．ただし，
·�は床関数を表す．これは，
因子F1から因子Fnまでは

⌊
s+1
2

⌋
因子以下の交互作用

効果の存在を仮定し，更に因子 F1から因子 Fn−1まで

は
⌊

t
2

⌋
因子以下の交互作用効果の存在を仮定し，それ以

外の交互作用効果の存在は仮定しないことを意味する．

次に，仮定 3.2 のもとで最適な計画について述べる．

［系 3.1］ 式 (6)の集合Dでの直交計画は仮定 3.2 の

もとで最適な計画である．

D=
{

L⊆2[n]
∣∣∣(|L|≤s + 1)∨(|L|≤ t ∧ n /∈L)

}
.

(6)

これは，定理 2.2 において，式 (5)の集合 Aから定

まる集合 DA が DA ⊂ D を満たすことから明らか．

［例 3.1］ 例 2.1 では，q = 5, t = 3, s = 1である．

また，この計画を利用したときの推定精度を述べる．

n ∈ {i1, . . . , ik} ∈ Aのとき，任意の k ∈
[⌊

s+1
2

⌋]
に

ついて，式 (7)が成立する．

max V
[
ˆ̄θi1,...,ik
xi1 ,...,xik

]
=

qk−1+t−s

N
σ2. (7)

また，n /∈ {i1, . . . , ik} ∈ Aのとき，任意の k ∈
[⌊

t
2

⌋]
について，式 (8)が成立する．

max V
[
ˆ̄θi1,...,ik
xi1 ,...,xik

]
=

qk

N
σ2. (8)

次に，式 (6) の集合 D での直交計画の構成に

関する従来研究 [1] について述べる．[1] では，OA

(N, n + t − s − 1, q, t)の第 n列から第 n + t − s − 1

列に対して F
t−s
q → Fqt−s の変換をすることでできた

N 行 n 列の行列を計画に対応させる方法を採用して

いる．本研究ではこれを多水準作成法と呼ぶ．ただし，

この方法で構成できる直交計画の実験回数 N は限ら

れた値しかとることができない．

4. 本提案1：最適な混合系直交計画のAOA
を利用した構成法

本節では，本提案として，仮定 3.2 のもとで最適な

計画の構成法を述べる．更に，補足として，従来法と

の比較について述べる．

4. 1 最適な混合系直交計画のAOAを利用した構

成法

本節では，仮定 3.2 のもとで最適な計画を，AOA

に計画を対応させることで構成する方法を提案する．

最初に，AOAの定義を述べる．

［定義 4.1］（AOA [5]） 有限体上 qt × n行列X が次

の条件を満たすとき，この行列 X を Augmented

Orthogonal Arrays (拡張直交配列，AOA) と呼

び，AOA (qt, n − 1, q, t, s)と書く．

（ 1） 第 1列から第 n − 1列は体 Fq の元から，第

n列は体 Fqt−s の元からなる．

（ 2） 第 1列から第 n − 1列のうちの任意の t列は

直交する．
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（ 3） 第 1列から第 n− 1列のうちの任意の s列と

第 n列は直交する．

次に，AOAと計画についての関係を述べる．

［補題 4.1］ 計画 X は，AOA (qt, n − 1, q, t, s)であ

るならば，式 (6)の集合 D での直交計画であるので，

仮定 3.2 のもとで最適な計画である．

したがって，AOA (qt, n − 1, q, t, s) が構成できれ

ば，3. 1の対応と同様に混合水準の計画にこの AOA

を対応させることで，最適な直交計画を構成できる．

次に，AOAに関する命題 4.1，4.2，4.3と，計画の

二つの構成法（方法 4.2，方法 4.3）を述べる．

［命題 4.1］（ [5]） 行列 G を体 Fq 上 t × (n + t − s)

行列とする．第 1 列から第 n 列のうち，任意の t 列

が体 Fq 上一次独立であり，かつ第 1列から第 n列の

うち任意の s列と第 n + 1列から第 n + t − s列が体

Fq 上一次独立であるような行列 G が存在するとき，

AOA (qt, n, q, t, s)は存在する．

（証明） 集合 {mG | m ∈ F
t
q} ⊂

(
F

n+t−s
q

)
の要素全

体を qt × (n + t − s)行列に並べ，第 n + 1列から第

n + t − s 列に対して F
t−s
q → Fqt−s の変換をすると

AOA (qt, n, q, t, s)となる． �

［例 4.1］ F25 = F5(α)とし，α ∈ F25 は体 F5 上既約

多項式 x2 + 2 = 0の根とする．q = 5，n = 5，t = 4，

s = 2とする．α0 = 1, α1 = 2, α2 = 3, α3 = 4とし，

体 F5 上 4 × 2行列 G1 の任意の第 (i, j)成分は αj
i−1

であるとする．生成行列 Gを

G = (I4 | G1) =

⎛
⎜⎜⎜⎝

1 0 0 0 1 1

0 1 0 0 2 4

0 0 1 0 3 4

0 0 0 1 4 1

⎞
⎟⎟⎟⎠ (9)

と定めると，次の行列は AOA (54, 4, 5, 4, 2)となる．

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 α + 1

0 1 0 0 2α + 4

0 0 1 0 3α + 4

0 0 0 1 4α + 1
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

上記の行列 (10) に対応する集合は，例 2.1 における

前提条件 Aから定まる集合 DA での直交計画になり，

したがって最適な計画である．

命題 4.1 の行列 Gを生成行列と呼ぶ．AOAの構成

の問題は生成行列の構成の問題に帰着できる．

［命題 4.2］（ [5]） q を奇数，更に 3 ≤ t ≤ q とす

る．このとき，AOA (qt, q, q, t, 1)は存在する．一方，

OA(qt, q + t − 1, q, t)は存在しない．

命題 4.2 の証明では，AOAの存在は，生成行列 G

を実際に構成することで証明している．この方法で構

成された AOAに対応させることで計画を構成する方

法を本研究では方法 4.2と呼ぶ．また，多水準作成法

で AOA (qt, q, q, t, 1)に対応する計画を構成するため

には OA(qt, q + t − 1, q, t)が存在する必要があるが，

命題 4.2 によると OA(qt, q + t − 1, q, t) が存在しな

い．よって，命題 4.2 の仮定のもとでは，方法 4.2 で

は AOA (qt, q, q, t, 1)に対応する計画を構成可能であ

り，多水準作成法では構成不可能である．したがって，

定理 4.1 が成立する．

［定理 4.1］ q を奇数，更に 3 ≤ t ≤ q とする．

n = q + 1，s = 1 とする．このとき，仮定 3.2 の

もとで最適な計画を，方法 4.2 で構成できる．一方，

多水準作成法では構成できない．

また，命題 4.2 と同様に命題 4.3 が成立する．

［命題 4.3］（ [5]） s ≤ q − 1 とする．このとき，

AOA (qq+1, q + 1, q, q + 1, s)は存在する．一方，OA

(qq+1, 2(q + 1) − s, q, q + 1)は存在しない．

命題 4.3 の証明では，AOAの存在は，生成行列 G

を実際に構成することで証明している．この方法で構

成された AOAに対応させることで計画を構成する方

法を本研究では方法 4.3と呼ぶ．先と同様に，次の定

理が成立する．

［定理 4.2］ s ≤ q − 1とする．n = q + 2，t = q + 1

とする．このとき，仮定 3.2 のもとで最適な計画を，

方法 4.3 で構成できる．一方，多水準作成法では構成

できない．

定理 4.1，4.2 により，最適な直交計画を方法 4.2，

方法 4.3 で構成可能だが，多水準作成法で構成不可能

な水準数，因子数，実験回数，前提条件の値の範囲が

存在することが示された．

4. 2 従来法との比較

本節では，補足として，従来法と提案法を，構成し

た計画の実験回数で比較する．

最初に，多水準作成法と方法 4.2 を比較をした場合

に得られる系を述べる．

［系 4.1］ q を奇数で，3 ≤ t ≤ q とする．水準数 q，

因子数 q + 1，強さ t，s = 1とする．多水準作成法で

構成できる最適な計画の実験回数の下限を Nmin，方

法 4.2 で構成できる最適な計画の実験回数を N2 とお

21



電子情報通信学会論文誌 2020/1 Vol. J103–A No. 1

く．このとき，Nmin > N2 が成立する．

（証明） 方法 4.2 では，水準数 q，因子数 q + 1，強さ

t，s = 1 を設定したもとで実験回数 N2 = qt の直交

計画が構成できる．一方，多水準作成法で構成すると，

命題 4.2 より，多水準作成法においてもととなる OA

(qt, q + t − 1, q, t) は存在しない．よって，水準数 q，

因子数 q + t − 1，強さ t を固定したもとで行数が qt

より大きい OAから作る必要がある．多水準作成法に

おいて，もととなる OAと構成できる AOAの行数は

等しいため，Nmin > N2 = qt が成立する． �

一般的にNminを陽に記述することは難しい [8]．そ

こで，系 4.1 の具体例を考察する．

［例 4.2］ q = 5，t = 4とすると，方法 4.2 で AOA

(54, 5, 5, 4, 1) に対応する計画を構成できる．この計

画は最適なので，5水準をもつ 5つの因子間の任意の

2 因子交互作用効果と，53 水準をもつ因子の主効果

を最良の精度で求めることができる．これに対して，

従来の多水準作成法からこの AOA を構成するには，

OA (54, 8, 5, 4)が必要となる．しかし，q = 5，t = 4，

N = 54 を固定したもとで選ぶことができる最大因子

数は 6である [8]ため，このOAは存在しない．q = 5，

t = 4で n = 8を満足するには N = 55 の OAが必要

となる．この OAによって構成される AOAの行数も

55 なので，従来の方が実験回数が多い．

次に，多水準作成法と方法 4.3 を比較をした場合に

得られる系を述べる．証明は系 4.1 と同様である．

［系 4.2］ s ≤ q − 1とする．水準数 q，因子数 q + 2，

強さ q + 1，s のパラメータを設定する．多水準作成

法で構成できる計画の実験回数の下限を N ′
min，方法

4.3 で構成できる計画の実験回数を N3 とおく．この

とき，N ′
min > N3 が成立する．

ここで，系 4.2 の具体例を考察する．

［例 4.3］ q = 5，s = 3とすると，方法 4.3 で AOA

(56, 6, 5, 6, 3)に対応する計画を構成できる．この計画

は最適なので，5水準をもつ 6個の因子間の任意の 3因

子交互作用効果と，53 水準をもつ因子を含んだ任意の

2因子交互作用効果を最良の精度で求められる．これ

に対して，従来の多水準作成法からこの AOAを構成

するには，OA (56, 9, 5, 6)が必要となる．しかし，命

題 4.3 よりこの OAは存在しないので，q = 5，t = 6

で n = 9を満たすには少なくともN > 56 を満たす必

要がある．この OAによって構成される AOAの行数

も 56 より大きいため，従来法の方が実験回数が多い．

以上より，方法 4.2 及び方法 4.3 の方が多水準作成

法より少ない実験回数の最適な計画を構成できること

が示された．

5. 本提案 2：仮定を拡張した最適な混合系
直交計画のGAOAを利用した構成法

本節では，本提案として，前節までの水準数，因子

数，実験回数，前提条件の値の範囲を更に拡張した値

の範囲を仮定し，その仮定のもとで最適な混合系直交

計画の構成法を提案する．

5. 1 構造式の仮定と最適な混合系直交計画

最初に，本節における構造式の仮定を述べる．

［仮定 5.1］ ある素数の累乗 q と，t, b, s1, . . . , sb ∈ N

が存在し，t≥s1, . . . , t≥sb，n= t+b，q1 = · · · =qt =

q, qt+1 =qt−s1 , qt+2 =qt−s2 , . . . , qt+b =qt−sb 及び

A =
{

J ⊆ 2[t+b]
∣∣∣
(
J ⊆ 2[t] ∧ |J | ≤

⌊
t

2

⌋)

∨
(
i ∈ [b] ∧ J ⊆ 2[t]∪{t+i} ∧ |J | ≤

⌊
si + 1

2

⌋)

∨
(
J ⊆ 2[t+b]\[t] ∧ |J | ≤

⌊
b

2

⌋)}
(11)

を満たすとする．これは，因子 F1 から因子 Ft までは⌊
t
2

⌋
因子以下の交互作用効果の存在を全て仮定し，更

に各 i ∈ [b]に対し，因子 F1 から因子 Ft まで及び因

子 Ft+i では
⌊

si+1
2

⌋
因子以下の交互作用効果の存在

を全て仮定し，更に因子 Ft+1 から因子 Ft+b までは⌊
b
2

⌋
因子以下の交互作用効果の存在を全て仮定し，そ

れ以外の交互作用は仮定しないことを意味する．

仮定 5.1 は b = 1ならば仮定 3.2 に一致する．

次に，仮定 5.1 のもとで最適な計画について述べる．

これは系 3.1 と同様に，次のことが示される．

［系 5.1］ 式 (12) の集合 D での直交計画は仮定 5.1

のもとで最適な計画である．

D =
{

L ⊆ 2[t+b]
∣∣∣(L ⊆ 2[t] ∧ |L| ≤ t

)

∨
(
i ∈ [b] ∧ L ⊆ 2[t]∪{t+i} ∧ |L| ≤ si + 1

)

∨
(
L ⊆ 2[t+b]\[t] ∧ |L| ≤ b

)}
(12)

この計画を利用したときの推定精度を述べる．

{i1, . . . , ik} ⊆ [t] を満たす {i1, . . . , ik} ∈ A の場合，

任意の k ∈
[⌊

t
2

⌋]
について，式 (13)が成立する．

max V
[
ˆ̄θi1,...,ik
xi1 ,...,xik

]
=

qk

N
σ2. (13)

更に，{i1, . . . , ik} ⊆ [t] ∪ {t + j}, j ∈ [b]であるよう
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な {i1, . . . , ik} ∈ Aの場合，任意の k ∈
[⌊

sj+1

2

⌋]
に

ついて，式 (14)が成立する．

max V
[
ˆ̄θi1,...,ik
xi1 ,...,xik

]
=

qi1 · · · qik

N
σ2. (14)

そして，{i1, . . . , ik} ⊆ [t + b]\[t] であるような
{i1, . . . , ik} ∈ A の場合，任意の k ∈

[⌊
b
2

⌋]
につ

いて，式 (15)が成立する．

max V
[
ˆ̄θi1,...,ik
xi1 ,...,xik

]
=

qi1 · · · qik

N
σ2. (15)

5. 2 最適な混合系直交計画のGAOAを利用した

構成法

本節では，GAOA なる行列を提案し，仮定 5.1 の

もとで最適な直交計画を，前節と同様に，GAOA に

計画に対応させることで構成する方法を提案する．

最初に，GAOAの定義を述べる．

［定義 5.1］（GAOA） qt×n行列Xが次の条件を満た

すとき，行列X をGeneralized Augmented Or-

thogonal Arrays (一般化拡張直交配列，GAOA)

と呼び，GAOA
(
qt, n − b, q, t, (s1, . . . , sb)

)
と書く．

（ 1） 第 1列から第 t列までは体 Fq の元，任意の

i ∈ [b]に対し第 t + i列は体 Fqt−si の元からなる．

（ 2） 第 1列から第 t列が直交する．

（ 3） 任意の i ∈ [b]について，第 1列から第 t列の

うち任意の si 列と第 t + i列が直交する．

（ 4） 第 t + 1列から第 t + b列が直交する．

b = 1のとき，GAOA
(
qt, n − b, q, t, (s1, . . . , sb)

)
は AOA

(
qt, n − 1, q, t, s1

)
に一致する．

GAOAと計画の関係は次のとおりである．

［補題 5.1］ 計画Xは，GAOA
(
qt, n−b, q, t, (s1, . . . ,

sb)
)
であるならば，式 (12)の集合Dでの直交計画で

あるので，仮定 5.1 のもとで最適な計画である．

以降，GAOAの具体的な構成法を述べる．

［補題 5.2］ β
def
= bt−∑b

i=1
si とおく．条件 (1), (2),

(3)を全て満たす体 Fq 上 t× (t + β)行列 Gが存在す

るとき，GAOA
(
qt, n − b, q, t, (s1, . . . , sb)

)
は存在す

る．ただし，行列Gの第 1列から第 t列から成る行列

を第 0 ブロックと呼び，任意の i ∈ [b] について，第

it − ∑i−1

l=1
sl + 1列から第 (i + 1)t − ∑i

l=1
sl 列から

成る行列を第 iブロックと呼ぶ．

（ 1） 第 1列から第 t列が体 Fq 上一次独立である．

（ 2） 任意の i ∈ [b]について第 0ブロックのうちの

任意の si 列と第 iブロックが体 Fq 上一次独立である．

（ 3） 第 1ブロックから第 bブロックまでの全ての

列が体 Fq 上一次独立である．

これは命題 4.1 と同様に証明できる．上記の行列 G

をGAOAの生成行列と呼ぶ．前節と同様に GAOA

の構成の問題を生成行列Gの構成の問題に帰着できる．

生成行列 Gは，補題 5.3 のように構成すればよい．

［補題 5.3］ 体 Fq 上 t× (t + β)行列 Gの第 0ブロッ

クは t次単位行列とし，任意の i ∈ [b]について，第 iブ

ロックの第 (j, k)成分をα
(i−1)t−

∑i−1

l=1
sl+k

j−1 とする．た

だし，q ≥ t+1 ≥ β +1とし，α0 = 1,α1, . . . , αt−1 ∈
Fq\{0} は互いに相異なるとする．このとき，行列 G

は補題 5.2 の条件 (1), (2), (3)を満たす．

（証明） 行列 G が条件 (1), (2), (3) を満たすことを

示す．

（ 1） 第 0ブロックは単位行列であるため明らか．

（ 2） 任意の i ∈ [b] を取る．第 0 ブロックのうち

の任意の si 列及び第 iブロックからなる t × t部分行

列を Vi とすると，余因子展開とヴァンデルモンドの

行列式から，行列 Vi の行列式が 0でないことが示さ

れる．よって行列 Vi の全ての列が体 Fq 上一次独立で

あることが示される．

（ 3） t × β 行列W を行列 Gの第 1ブロックから

第 bブロックまでの全ての列から成る行列とし，行列

W の任意の β × β 部分行列をW ′ とすると，(2)と同

様に，行列W ′ の全ての列が体 Fq 上一次独立である

ことが示される．よって，行列W の全ての列が体 Fq

上一次独立であることが示される． �

この生成行列 G で構成された GAOA に対応させ

ることで計画 X を構成する方法を方法 5.3 と呼ぶ．

b =1，n − 1 = q + 1 = tならば方法 5.3 は方法 4.3

に一致する．

［例 5.1］ 例 4.1 と同様に，q = 5, t = 4，α ∈ F25，

α1 = 2, α2 = 3, α3 = 4 とする．b = s1 = s2 = 2と

する．式 (16)の行列Gが生成行列である行列 (17)は

GAOA (54, 4, 5, 4, (2, 2))である．

G =

⎛
⎜⎜⎝

1 0 0 0 1 1 1 1

0 1 0 0 2 4 3 1

0 0 1 0 3 4 2 1

0 0 0 1 4 1 4 1

⎞
⎟⎟⎠ (16)

X =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 α + 1 α + 1

0 1 0 0 2α + 4 3α + 1

0 0 1 0 3α + 4 2α + 1

0 0 0 1 4α + 1 4α + 1
...

...

⎞
⎟⎟⎟⎟⎟⎠

. (17)
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補題 5.1，5.2，5.3 から次の定理が示される．

［定理 5.1］ q ≥ t + 1 ≥ β + 1ならば，仮定 5.1 のも

とで最適な計画を構成できる．

よって，最適な直交計画を方法 4.3 で構成可能な水

準数，因子数，実験回数，前提条件の値の範囲より，

方法 5.3 で構成可能な範囲のほうが広いことが示さ

れた．

6. む す び

本研究では，計画の構成法として，AOA を利用す

る方法 4.2 と方法 4.3 を提案した．また，最適な直交

計画を多水準作成法では構成不可能な水準数，因子数，

実験回数，前提条件の値の範囲の一部において，最適

な直交計画を方法 4.2 と方法 4.3 で構成可能であるこ

とを示した．

更に，本研究では，方法 4.3 を特別な場合として含

む計画の構成法として，GAOA を利用する方法 5.3

を提案した．また，最適な直交計画を方法 4.3 で構成

可能な水準数，因子数，実験回数，前提条件の値の範

囲は，方法 5.3 によって拡張されたことも示した．

以上より，方法 4.2 と方法 5.3 を利用すると，最適

な直交計画を構成可能な水準数，因子数，実験回数，前

提条件の値の範囲が従来より拡張されることが示され

た．すなわち，従来より一般的な構造式での最適な直交

計画をこれらの方法で構成可能であることが示された．
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